
Matlab Tutorial
© 2003 Information Technology Services, UT-Austin

Part I: Getting Started... 4

Section 1: Introduction .. 4
About this Document... 4
Introduction to Matlab ... 5

Section 2: An Overview of Matlab .. 5
Access to Matlab and ITS Matlab consulting services.. 5
Getting Started .. 6
The Desktop Layout .. 7
The Workspace Window ... 8
The Current Directory Window ... 8
The Launch Pad Window .. 8
The Command History Window .. 8
The Command Window... 9
The Figure Window... 10

Section 3: Importing and Exporting Information.. 10
Command Line Import .. 11
The Import Wizard .. 11
Import Functions ... 13

csvread .. 13
dlmread ... 14
load ... 14
fscanf... 14
textread.. 15

Export Functions ... 16
diary .. 16
dlmwrite .. 17
save ... 17
fprintf .. 18

M-file Scripts .. 19
M-Books ... 19
Advanced Methods for Binary Information.. 22

Section 4: Notation, Syntax, and Operations.. 23
Variable names.. 23
Numerical conventions .. 23
Geometrical and directional conventions ... 24
Operator and delimiter symbolics .. 24

Part II: Computing and Programming..27

Section 5: Computational Procedures .. 27
Special Built-in Constants ... 27

2

Special Built-in Functions ... 28
Compound Expressions and Operator Precedence.. 30
Commutivity of Operations and Finite Decimal Expansion Approximations.......... 32
Computing with matrices and vectors .. 32
Simultaneous linear equations ... 33
Eigenvectors and Eigenvalues ... 34
Poles, residues, and partial fraction expansion ... 37
Convolution and deconvolution ... 38
Finite Fourier and Inverse Fourier Transforms.. 39
Numerical Differentiation and Integration ... 39
Numerical solution of differential equations .. 42

Section 6: Programming.. 42
Using the Editor .. 42
Types and Structures of M-files... 43
Internal Documentation ... 45
Passing variables by name and value ... 46
Function evaluation and function handles .. 47
Function recursion... 48
Flow control .. 49
String evaluation and manipulation.. 51
Keyboard input.. 53
Multidimensional arrays and indexing ... 54
Debugging... 56
Using Matlab with External Code.. 59
Exchanging and viewing text information.. 59
Compiling and calling external files from Matlab .. 60
Calling Matlab objects from external progams... 62
Using Java Classes in Matlab .. 62

Part III: Graphics and Data Analysis ...63

Section 7: Graphics and Data Visualization .. 64
Two dimensional plotting .. 64
Three dimensional plotting .. 65
Animation ... 68
The Handle Graphics system ... 68
Customizing displays... 69

Section 8: Data Analysis ... 72
Data analysis functions.. 72
Regression and curve fitting .. 73
Signal and image processing.. 75

Part IV: Modeling and Simulation..81

Section 9: Modeling and Simulation... 81
System Identification... 81
Using the Control System Toolbox.. 81

3

Optimization Toolbox ... 84
Using Simulink.. 87
Simulink Library Browser ... 88
Construction/ Simulation of Dynamical Systems ... 92

4

Part I: Getting Started

Section 1: Introduction

About this Document

This document introduces you to the MatlabR13 suite of applications from Mathworks,
Inc. The R13 release consists of version 6.5 of the primary Matlab application along
with some auxiliary modeling and simulation applications and specialized toolboxes.
The suite as a whole will be surveyed but the primary application, Matlab 6.5, will be the
focus of this tutorial. Instruction is aimed toward first-time users; however, those who
are already familiar with previous versions of Matlab can use this document to learn
about some of Matlab’s new features and graphical interface. The document is organized
into four parts containing a total of nine sections.

Part I includes the first four sections and serves to get the user acquainted with the
Matlab application. The first section provides a brief introduction to this tutorial and to
Matlab. The second section gives an overview of the Matlab desktop layout and guides
the reader through each of the windows and their functions. Also covered in this section
is the layout for the built-in Matlab Help. The third section covers the basic methods of
getting data into and exporting data from Matlab, including the import wizard, command
line I/O functions, and M-books. The fourth section introduces the notation and syntax
used by Matlab and contains essential information for routine usage of the application.

Part II includes the fifth and sixth sections which serve to introduce the basic
functionalities of the Matlab application such that the user will be able to perform routine
tasks. The fifth section covers computational and numerical methods for doing various
mathematical operations. The sixth section goes through the basics of programming in
the Matlab programming language and the construction of M-files, which are callable
scripts, macros, and functions that can be used from the Matlab command line prompt or
can be nested within another such file.

Part III includes the seventh and eighth sections and covers aspects of manipulating and
visualizing properties of data sets, including experimental data that have no assumed
functional relationships a priori. The seventh section treats aspects of graphical display
and data visualization, particularly plots. An eighth section covers several ways in which
Matlab can be used in the analysis of experimental or collected data.

Part IV encompasses the ninth and final section which deals with optimization methods
and with modeling and simulation of dynamical systems. This last section includes an
introduction to the auxiliary Simulink application that is distributed with Matlab. Also,
this section will introduce the usage of Matlab Toolboxes, which are ensembles of related
M-files developed for specific types of applications.

5

Introduction to Matlab

In the 1960s and 1970s before the appearance of personal computers, complex and large
scale calculations were done on large mainframes using code primarily developed with
Fortran. As a number of related large subroutines were developed for specific
computational purposes, they were organized into public domain packages and
distributed for free. Matlab was originally created as a front end for one of these, the
LINPACK package -- a group of routines for working with matrices and linear algebra.
The primary developer, Professor Cleve Moler at the University of New Mexico,
eventually founded Mathworks, Inc., to further develop and market the product in a
commercial setting. From the original Matlab, a high powered suite of applications has
evolved. The current generation release, the MatlabR13 suite, features the newest kernel,
Matlab 6.5. It is largely backward compatible with recent Matlab versions, but there are
some slight syntax changes. The biggest changes that users of MatlabR11 and earlier
versions will notice are the implementation of a desktop layout format for interactive use
and differences in the handle graphics that now accommodate several point and click
features for labeling and enhancing plots and graphical output.

Section 2: An Overview of Matlab

Access to Matlab and ITS Matlab consulting services

Information Technology Services (ITS) at UT-Austin provides free Matlab 6.5 access to
students, faculty, and staff on its time sharing mainframes, or via the desktop computers
in the Student Microcomputer Facility (SMF) on the second floor of the Flawn Academic
Center (FAC 212). Before using these machines it will be necessary to have an
individually funded (IF) or departmental sponsored account issued by ITS. There is no
cost for using an IF or departmental account in the SMF, although charges may be
incurred if optional validations for internet dialup service or excess mainframe disk
storage allocation is desired. Information about getting an ITS- issued account is
available at

 http://www.utexas.edu/its/account/index.html

Matlab 6.5 is installed on the ITS Unix systems: ccwf.cc.utexas.edu and
larry.cc.utexas.edu which run on Solaris 8. A Windows version of Matlab 6.5 is
installed on the ITS applications Windows terminal server, earthquake.cc.utexas.edu. To
access these installations, an ITS-issued account must have HPW validation (ccwf), UTS
validation (larry), or WNT validation (earthquake). Some academic departments (e.g.,
Chemical Engineering) also have Matlab already installed on machines in their local
computer labs. Also, UT-Austin departments are eligible to purchase licenses for Matlab
for use within their own labs through the Software Distribution Services unit of ITS.
Details of various licensing options available for purchase by academic departments are
available at

6

 http://www.utexas.edu/its/sds/products/matlab.html

The MatlabR13 suite containing Matlab 6.5 is also marketed directly by Mathworks, Inc.,
which has special academic pricing; and, for individuals enrolled as students, a very
inexpensive student edition with full functionality is available. Information and pricing is
given at

 http://www.mathworks.com/store/index.html

The Campus Computer Store in VRC also sells the student version of Matlab. A
currently valid student ID is needed for purchase.

ITS provides free consulting for UT-Austin student, faculty, and staff members using
Matlab for education and research purposes. However, direct assistance with homework,
class assignments, or projects of a commercial nature is not available. Appointments for
walk-in or phone consulting can be made at

http://www.utexas.edu/cc/amicus/index.html

and questions can be submitted via the web form

http://www.utexas.edu/its/rc/ehelp-request.html

or by direct e-mail to math@its.utexas.edu.

Getting Started

The procedure for launching Matlab 6.5 is no different from that used with earlier
versions. However, the launch method varies.

• With Unix, the environment PATH variable must include the directory containing
the Matlab installation. On the ITS Unix systems this directory is
/usr/local/matlab and there is a script that will automatically augment the PATH
variable with necessary additions. This script can be run from a shell prompt with
the command eval`/usr/local/etc/appuser`. Please note that
backquotes should be used rather than ordinary single quotes.
If the Matlab application is being run on a remote X terminal using a Unix
mainframe application, then the DISPLAY variable has to be set to the local
terminal and the local terminal has to grant access to the Unix mainframe. Both
of these requirements can be circumvented if the mainframe connection is through
a secure shell (SSH) protocol. Otherwise the commands

setenv DISPLAY myhost.mydomain:0.0
xhost +remotesystem.remotedomain

7

will need to be executed at the shell prompt. Matlab can then be started at a shell
prompt with the command matlab, or, in background with concurrent access to
other processes with the command matlab &.

• The Windows/NT distribution can be launched by double clicking on a Matlab
icon or shortcut. The default working path in this distribution consists of the
Work subfolder of the top level installation folder and the hierarchy within the
Toolbox subfolder of the top level installation folder. Access to files in other
folders can be set by navigating with the browser from the Set Path option of the
File pull down menu.

The Desktop Layout

Once the path environment is set properly and the desktop appears on the monitor screen,
using Matlab 6.5 will be practically the same for all operating system distributions.
There are several windows that can be used in arranging the desktop, but a default
configuration will appear upon launching. If desired this can be modified by selecting an
alternate choice from View -> Desktop Layout . This tutorial will use the layout for
MatlabR13 package, which is currently the ITS supported production version. The
default desktop for MatlabR13 has a small Current Directory selection window near the
top, with the Work folder being specified initially. If other folders have been added, then
another current directory setting can be selected from among those available. The main
area has the Command window on the right and an upper and lower pair of toggled
windows on the left side. The upper left panel will show the Workspace window which
can be toggled with a Current Directory window. The lower left panel will show a
Command History window. A Launch Pad Window toggle can be added to the docked
upper left area by selecting it from View -> Launch Pad on the top navigation bar.
There are also remote Help and Demo windows that can be launched from the Desktop’s
Help pull down menu, and there is a remote Figure window that is launched whenever
a command involving graphical display is executed.

8

The Workspace Window

The Workspace window provides an inventory of all the items in the workspace that are
currently defined, either by assignment or calculation in the Command window or by
importation with a load command from the Matlab command line prompt. By default it
is displayed in the upper left area of toggled windows when the application is first
launched or when View -> Desktop Layout -> Default is selected from the navigation
bar.

The Current Directory Window

. The Current Directory window displays a current directory with a listing of its
contents. There is navigation capability for resetting the current directory to any
directory among those set in the path. This window is useful for finding the location of
particular files and scripts so that they can be edited, moved, renamed, deleted, etc. The
default current directory is the Work subdirectory of the original Matlab installation
directory.

The Launch Pad Window

The Launch Pad window, displayed in the upper left of the desktop configuration when
toggling after addition with View -> Launch Pad from the navigation bar, serves as a
convenient assemblage of shortcuts to common operations and windows that may not
currently be displayed. For example, the Help window can be launched by clicking on
the icon here rather than using the navigation bar pull-down menu. A Demo window for
demonstrations can be launched from here, as can auxiliary applications such as
Simulink.

The Command History Window

The Command History window, at the lower left in the default desktop, contains a log of
commands that have been executed within the Command window. This is a convenient
feature for tracking when developing or debugging programs or to confirm that
commands were executed in a particular sequence during a multistep calculation from the
command line.

9

The Command Window

. The Command window is where the command line prompt for interactive commands is
located. This is also the only window that appears if you execute the Unix version of
Matlab outside of an X environment, e.g., on a vt100 screen. Commands and scripts can
be executed from a vt100 window, but graphics and desktop tools will not be available.
The Matlab prompt on the command window consists of two adjacent right angle
brackets, i.e., >>. Results of command operations will also be displayed in this window
unless the command line is terminated by a semi-colon, in which case the display of
results is suppressed. If a command or script specified on the command line is
questionable or cannot be executed because of invalid syntax, undefined variables, etc., a
diagnostic message will be displayed in the Command window. The current value of
any saved variable is also displayed in this window if its name is entered at a prompt.

The Help Window

Separate from the main desktop layout is a Help desktop with its own layout. This utility
can be launched by selecting Help ->MATLAB Help from the Help pull down menu. This
Help desktop has a right side which displays the text for help topics, organized as tutorial
of sorts. The left side has various tabs that can be brought to the foreground for
navigating by table of contents, by indexed keywords, or by a search on a particular
string.

10

The Figure Window

There is a Figure window that floats independently from the main desktop. If not already
present, it is launched when command execution results in graphical output. From the
Edit menu on the main toolbar, there are selections for editing figure properties, axis
properties, and properties of objects within figures. On the Tools menu of the main
toolbar there are selections for further manipulation such as zooming and perspective
rotation. There is also a main toolbar menu for Help, which includes specific graphics
help and demos.

Section 3: Importing and Exporting Information

Information can be imported into and exported from the Matlab application by several
different methods. Some of the more common procedures are discussed below. To
follow the specific examples given, copies of the example external data files will need to
be copied to a location where they can be accessed by the Matlab program. Thus, before
proceeding with this section, find the following documents

http://www.utexas.edu/cc/math/tutorials/matlab6/planetsize.txt
http://www.utexas.edu/cc/math/tutorials/matlab6/planets1.txt
http://www.utexas.edu/cc/math/tutorials/matlab6/planets2.txt
http://www.utexas.edu/cc/math/tutorials/matlab6/planets3.txt
http://www.utexas.edu/cc/math/tutorials/matlab6/planetdata.doc
http://www.utexas.edu/cc/math/tutorials/matlab6/planets6.xls

and copy them into a location within the Matlab search path (for example, in the default
work folder or directory). If you cannot access these external documents, you can also
find their ascii text contents within this document. Remember that the planetdata.doc and
plantets6.xls files are binary and must be transferred in that mode

11

Command Line Import

The most elementary method for importing external information is piece by piece directly
from the command line by typing at the keyboard. For example:

>> earthradius = 6371

will assign the numerical value 6371 to a variable earthradius. For extensive amounts
of information there are more efficient methods.

The Import Wizard

Matlab-6 provides an Import Wizard for convenient importation of data from external
files. This tool can be activated by selecting File -> Import Data, or by executing the
command

>> uiimport

at a Matlab command line prompt. This utility can be used for importing both text and
numerical data contained within the same data file, but entries have to be in a matrix
format with specified column separators. As an example, consider a small file,
planetsize.txt, containing a few planets’ names, radii, and masses with columns separated
by tabs:

Planet Radius Mass-kg*10^24
Earth 6371 5.97
Mars 3390 0.64
Venus 6052 4.87

This file can be selected from the import wizard window as shown below

12

Clicking Open will import the file into Matlab. A preview screen appears which lets you
confirm the data importation, with separate tabs to examine the numerical data and the
text fields:

13

To continue, click on Next> and a new screen will provide the opportunity to selectively
choose which information from the file to import into the Matlab workspace. The
process is completed by clicking Finish .

Import Functions

There are a variety of other ways to import complex data using the Command Window.
Below several of these functions are described in detail.

csvread

This function imports numeric data with comma-separated values (csv). For example, in
the planetary data above, suppose that we have an external file planets1.txt , containing
the kilometer radial distances and 10^24 kg mass values for Earth, Mars and Venus:

6371,5.97
3390,0.64
6052,4.87

The command

>> planets1 = csvread('planets1.txt')

would create a 3x2 matrix with the name planets1 whose content is the same as that
shown on the data tab generated previously by using the import wizard for

14

the planetsize.txt file.

dlmread

This function is similar to csvread but more flexible, allowing the delimiter to be
specified by any character rather than restricting it to be a comma. For example, suppose
that the file planets2.txt had the format

6371;5.97
3390;0.64
6052;4.87

where values are separated by semi-colons. The command

>> planets = dlmread('planets2.txt', ';')

would create that same 3x2 matrix with the name planets2.

load

This is similar to csvread and dlmread but the separators have to be blank spaces. For
example, if the file planets3.txt has the structure

6371 5.97
3390 0.64
6052 4.87

then the command

>> load planets3.txt

would create the same 3x2 matrix with the name planets3.

fscanf

This is a lower level import function, equivalent to the C language function of the same
name but with the important difference that the result is vectorized. It requires extra
manipulations of opening and closing the file, but is more versatile in allowing text and
numbers to be read in together. For example, if we want to import the data from our file
planetsize.txt we could use the following sequence of commands to import the contents of
the file in vectorized form

fid =fopen('planetsize.txt');
planetsize = fscanf(fid,'%c')
fclose(fid);

15

where the '%c' argument for fscanf is identical to the C language, i.e., parsing as
character strings. The variable planetsize is then actually an 80 element row vector of
characters (including blank spaces, tabs, and linefeeds) which have numerical ascii
character code values. Characterized data values need to be converted to numbers before
mathematical manipulations will make sense. For example, we could convert the
characters in thestring representing the earth radius, i.e., elements 39 – 42, to numerical
form using the str2num Matlab function:

>> earthradius = str2num(planetsize(39:42))

The variable earthradius will be in numerical form, ready for performing mathematical
operations, e.g.,

>> earthvolume = (4/3)*pi*((earthradius)^3)

textread

The textread function is similar to the primitive fscanf but will allow data variables to
be defined as part of the import process. As an example, again suppose that the file
planetsize.txt contains the information that we want to import into Matlab. We can
specify the number of header lines to skip before reaching the actual data (one such line
in this example), and the individual data formats for each column of data. The file
contains the character string planet names in the first column, the decimal integer planet
radii in the second column and the floating point planet masses in the third column.
Thus, the command

>> [planets, radii, masses] = textread('planetsize.txt',
...
 '%s %d %f','headerlines',1)

where "%s" signifies string, "%d" signifies decimal, and "%f" signifies floating point in
the format argument, will give the display

planets =

 'Earth'
 'Mars'
 'Venus'

radii =

 6371
 3390
 6052

16

masses =

 5.9700
 0.6400
 4.8700
and add the vector variables planets, radii, and masses to the workspace.

Export Functions

diary

The simplest way to export data to an external file is make use of the diary function.
This is a utility for logging a transcript of the Matlab command line input and screen
output. The logging process starts subsequent to the command

>> diary filename

where “filename” is chosen, and terminates with the command

>> diary off

thus creating an external file that can be edited with a text editor to remove extraneous
material. For an example, let us create new variables using the data imported from the
planetsize.txt file:

>> volumes = (4/3).*pi.*((radii).^3);
>> densities = (10^27).*masses./((10^15).*volumes);
>> planetinfo(:,1) = volumes;
>> planetinfo(:,2) = densities;

The variable planetinfo will then be a 3 x 2 matrix with column 1 containing planet
volumes in cubic kilometers and column 2 containing planet densities in grams per cubic
centimeter. To export this information to an external file planets4.txt we first activate
the diary, set the display format to exponential form, type in the name of the variable
planetinfo, and turn off the diary:

>> diary planets4.txt
>> format short e
>> planetinfo
>> diary off

The external file planets4.txt then contains

format short e
planetinfo

17

planetinfo =

 1.0832e+012 5.5114e+000
 1.6319e+011 3.9219e+000
 9.2851e+011 5.2450e+000

diary off

The planets4.txt file can then be put into a text editor for deleting unwanted lines,
adding column headers, etc.

dlmwrite

The dlmwrite function allows you to write external data files in which the delimiter can
be specified. Let us assume that we have the variables from the textread example above
loaded into the workspace; that we have defined the vector variables volumes and
densities as shown above; and that we want to write out a new file planets5.txt with the
new volume and density data. We create a local array planets5 in the Command
Window by typing in the desired data, a column for each of the two vector variables

>> planets5(:,1) = volumes;
>> planets5(:,2) = densities;

 The command

dlmwrite('planets5.txt',planets5, '; ')

requests that the contents of the array planets5 be written to an external file planets5.txt
using a semicolon delimiter. Thus the new external file planets5.txt will contain

1083206916845.75;5.5114
163187806143.123;3.9219
928507395798.201;5.245

save

This utility is a primitive function that will save an array in an external file with columns
separated by blank space. With no arguments at all, the save command will store the
current values of all variables in a binary file matlab.mat from which they can be
retrieved in a subsequent Matlab session. Using the same array planets5 created above,
the command

>> save planets5.txt planets5 -ascii

will produce an external file planets5.txt whose content is
 1.0832069e+012 5.5114124e+000

18

 1.6318781e+011 3.9218617e+000
 9.2850740e+011 5.2449771e+000

Without an extension such as “.txt” and the flag “-ascii”, the default external file will be
given a default extension “.mat” and will be in binary format.

fprintf

This is another low level function that is equivalent to the C language function of the
same name. It is useful for exporting information that contains both text and data in a
specified format, using syntax similar to that of the C programming language. As an
example, suppose we want to export the newly computed planet volume and density
values shown above into a file planetinfo.txt that has the same layout as the imported
file planetsize.txt. For this purpose we need to create strings of 49 characters for each
line in a new array, both the header line which identifies the data in each column and the
three subsequent data lines themselves. We will give the new 4x49 array the arbitrary
name outdata. The header for the column of planet names, consisting of the first ten
characters of each line, can be created by assignment

>> outdata(1,1:10) = 'Planet '

and the headers for the the variable columns, spanning 38 subsequent characters, can be
generated by

>> outdata(1,11:48) = 'Volume (km^3) Density(g/cc) '

The subsequent data lines will have the planet names and variable values. For these, the
numeric values in the planetinfo variable need to be converted to text using the Matlab
num2str utility. For example

>> outdata(2,1:10) = 'Earth '
>> outdata(2,11:48) = num2str(planetinfo(1,:))
>> outdata(3,1:10) = 'Mars '
>> outdata(3,11:48) = num2str(planetinfo(2,:))
>> outdata(4,1:10) = 'Venus '
>> outdata(4,11:48) = num2str(planetinfo(3,:))

We also need to create an end of line character for each line in the 49th position. This is
done using the Matlab sprintf command, which functions as a printing command in the
same way as its namesake does in the C programming language

>> outdata(1:4,49) = sprintf('\n')

where "\n" is the notation for the end-of-line character. As an output format we want the
text strings with a line feed in the display wherever there is an end-of-line character in the

19

array. We can create a format variable, for example outformat, which specifies the
display characteristics by assigning it a string value with parsing instructions

>> outformat = '%s \n'

where "%s" indicates a string and "\n" indicates a linefeed at the end-of-line character.
The new file with the derived variable data can then be created with a sequence of two
commands, the first opening a new file with fopen and assigning it a numerical file ID
and the second printing the contents in the desired format with fprintf, both of which are
analogous to their namesake commands in the C programming language. In our example
we created the output array by row whereas fprintf assembles by column. Thus the array
that we want exported is actually the transpose of that which we created, i.e., outdata'
(with the trailing single quote mark) rather than outdata itself. In the Command Window
we therefore execute the commands

>> fid = fopen('planetinfo.txt', 'w')
>> fprintf(fid,outformat,outdata')

where the "w" is the permission argument of fopen signifying permission to create and
write to the file.

M-file Scripts

A sequence of command line instructions can be assembled as a macro for use in
importing information. These are called "m files" and have file names with the extension
".m". For example, an external M-file planetradii.m containing

earthradius = 6371
marsradius = 3390
venusradius = 6052

can be used as a source to import these variables with these values using the command

>> planetradii

M-Books

The M-Book feature is new to Matlab version 6. It is used to transfer data between
Matlab and Microsoft Word, a commonly used word processing utility. As an example,
suppose that we have a small Microsoft Word document with the name planetdata.doc
containing the following text

 Every planet has a mean radius in kilometers. Here are some examples:

 earthradius = 6371

20

 marsradius = 3390
 venusradius = 6052

This file can be imported into Matlab as an M-book, but if the notebook utility has not
been used before, the setting first needs to be configured. With the command

>> notebook –setup

Matlab will prompt for a version of Microsoft Word, its file location and the location of a
template to be used for the M-book file. If this configuration is already in place, the
command

>> notebook planetdata.doc

is used to access the external file. If no Microsoft Word file exists yet, one can be created
using the generic command

>> notebook

which opens up a blank Microsoft Word document; followed by Insert -> File and
navigating to the location of planetdata.doc. This procedure also adds a Notebook pull
down menu to the Word toolbar. Once imported, cells can be defined and evaluated
within the document by making the appropriate selections from the Notebook pull down
menu on the toolbar.

21

22

After subsequently choosing Notebook -> Evaluate Cell , where here we have chosen
only a single line in the document to comprise the cell, the window will appear as

Advanced Methods for Binary Information

In addition to the basic methods presented in this tutorial, there are several utilities
available in Matlab for importing specialized types of binary files. Examples are aviread
for audio-video interleaved (AVI) files, imread for image files in common formats such
as .jpg or .gif, and xlsread for Excel spreadsheets.

23

For example, the data from the Excel spreadsheet planets6.xls can be imported into the
Matlab workspace with the command

>> xlsread planets6

Section 4: Notation, Syntax, and Operations

Like other command driven applications, Matlab requires information to be presented in
a certain manner in order to be properly interpreted. It is a bit more rigid than some, for
example case sensitivity for names of constants and variables, and a bit more flexible
than others, for example many default values and interpretations for missing or
incomplete arguments.

Variable names

The case sensitive names of variables and assigned constants can contain any of the 26
lower case and 26 upper case letters of the standard Latin alphabet along with the ten
digits between 0 and 9 and the underscore. A name can be any sequence of 1 to 31 of
these characters, but the first must be an upper or lower case letter and there cannot be
any embedded blank spaces. Names longer than 31 characters are permitted but only the
first 31 are used for unique identification. Constants and variables can be assigned values
using the assignment operator, a single equal character (=), e.g., a = 3.

Numerical conventions

Matlab uses standard numerical notation. Numeric variables and constants are stored and
displayed as sequences of base 10 digits. The radix point for fraction expansion is the
period (.), and the lower case letter e is used for floating point exponent representation.
The e must be immediately followed by a + or – sign and then an integer. The + is

24

optional for positive exponents, and arbitrary preceding zeros are permitted. For
example, the integer 2000 can be represented as 2.0e+003, 2e3, 0002.000e0003, or
even with a negative exponent as 20000e-1; and the fraction 2000

1 can be represented as

0.0005, 5e-4, or 05.0000e-00004, or even with a positive exponent as 0.00005e001.

Matlab accommodates complex-valued numbers of two dimensional divisional algebra
using the symbols i and j as default notations for 1- . These two symbols are initially
identical, accommodating an historical notational difference between mathematical
literature and engineering literature. They are not the separate roots of -1 in the classical
i j k notation of higher dimensional divisional algebras such as Hamiltonian quaternions,
and in fact k does not have an initial built-in assigned value. Once i or j has been
assigned some value the symbol must be immediately preceded by a numerical value in
order to signify an imaginary part. If not, it will be interpreted as a separate entity. Thus:

(1 + 1i) is a single complex number with magnitude 1 for both real and imaginary parts
(1 + 1*i) is a sum of the integer 1 and whatever value i happens to have at the time

Although i has an initial built-in value of 1- , it can be overwritten by assignment, and
it frequently is because that letter is used routinely to denote an index counter in loops.

Geometrical and directional conventions

Most of Matlab’s geometrical and directional conventions should be familiar. The
principal domain for multivalued functions is symmetrically centered around zero, so
that, for example, the inverse sine function asin has the principal domain [-!/2, + !/2].
When a branch cut is needed for analytic continuation in the complex plane, it is typically
extends from a point on the real axis to negative infinity along that axis. Angles in the
complex plane or in polar coordinates are considered positive when measured in a
counterclockwise sense. Likewise the chirality of multidimensional coordinate systems
is established by the counterclockwise (right hand thumb) rule: if the fingers of the right
hand are curled from the positive nth axis toward the positive (n+1)th axis then the right
thumb will point in the positive direction of the orthogonal (n+2)th axis..Of course in
terms of plotting and visualization, dimensionality is limited to 3. For data analysis using
matrix techniques, Matlab interprets columns as variables with rows as observations.

Operator and delimiter symbolics

Basic Matlab notation essential for computation includes symbols that distinguish
between operations on elements within matrices and between matrices as a whole. The
difference between these all stem from the fundamental definition of matrix
multiplication specifying that a product matrix element is the inner product of the
corresponding row vector of the left hand component with the column vector of the right
hand component, e.g.,

25

˜̃
¯

ˆ
ÁÁ
Ë

Ê
=

dc

ba
X and ˜̃

¯

ˆ
ÁÁ
Ë

Ê
=

hg

fe
Y fi ˜̃

¯

ˆ
ÁÁ
Ë

Ê

++

++
=

 h)*(df)*(cg)*(de)*(c

 h)*(bf)*(ag)*(bc)*(a
Y*X

The Matlab notation for binary operations on matrices, vectors, and their elements
are as follows:

+ for matrix or element addition
- for matrix or element subtraction
.* for element multiplication
* for matrix multiplication
./ for element division
/ for right matrix division (right multiplication by an inverse)
\ for left matrix division (left multiplication by an inverse)

There is also Matlab notation for a few unary operations

.^ for raising an element to a power
^ for raising a matrix to a power
’ for converting to complex conjugate transpose (single forward quote)

Matlab also has specific notation and symbols for delimiters, separators,
grouping, type assignment, and so forth: Essential among these are:

 [] for vector and matrix delimiter
 () for grouping, vector and matrix element indicies, function argument delimiter
 : for index range separator
 ; for matrix row separator
 blank space for matrix column element separator
 , comma for matrix index separator, function argument separator
 . period for radix expansion separator (American convention)
’ ’ single forward quotes for demarcation of character strings

The Matlab notation for Boolean logicals uses the following symbols:

= = for equality
& for AND
| for inclusive OR,
~ for NOT
<= for less than or equal,
>= for greater than or equal
~= for not equal,
1 for true,
0 for false.

There is not a specific symbol notation for an exclusive OR, but there is a
functional equivalent: xor(p,q) is the same as the compound logical (p & ~q) | (~p & q).

26

Matlab also has special interpretation for certain symbols related to positioning within a
line of command instruction or code. Important and commonly used examples are:

Ignore Further Text: % anywhere in a line (uncompiled comment for rest of the line)
Suppress Display: ; at the end of the line
Continue on Next Line: … (three periods) at the end of a line

When working interactively at a keyboard, Matlab has a standard notation to
indicate a status of being ready for input

>> prompt for keyboard input in the command window

Also for interactive input from a keyboard, Matlab has a couple of standard
notations to interrupt functioning. These are:

^c simultaneous control key and lower case c to stop execution and return to prompt
^q simultaneous control key and lower case q to stop execution and exit Matlab

27

Part II: Computing and Programming

Section 5: Computational Procedures

The fundamental concept to remember when doing computations with Matlab is that
everything is actually a matrix, however it may be displayed. Indeed, the name Matlab
itself is a contraction of the words “MATrix LABoratory”. Thus the input

>> a = 1

does not directly assign the integer 1 to the variable a, but rather assigns a 1x1 matrix
whose first row, first column element is the integer 1. Similarly, the input

>> b = ’matlab’

does not directly assign that character string to the variable, but rather assigns a 1x6
matrix, i.e., a six element row vector of text type. The elements are displayed as
characters because of the text data type, but the underlying structure is a vector of
integers representing the ascii character code values for the letters, which becomes
apparent if it is multiplied by the integer 1, e.g.,

>> c = 1.*’matlab’

c =

 109 97 116 108 97 98

Logical expressions can be assigned to a variable, with a binary value specified by their
truth or falsity, but the actual variable is again a 1x1 matrix whose element is either 1 or 0
rather than the binary digit itself. For example,

>> d = (1+1 = = 2)

creates a logical 1x1 matrix [1] with the property that (d + d) will produce the numeric
1x1 matrix [2], while (d & d) will produce the logical 1x1 matrix [1].

Special Built-in Constants

In addition to the default assignment for i and j as the complex-valued 1- , Matlab has
several other built-in constants, some of which can be overwritten by assignment,. but

28

which are then restorable to the original default with a clearing command. Some
commonly used ones with universal meaning are

pi for the rational approximation of p
inf for generic infinity (without regard to cardinality)

NaN for numerically derived expression that is not a number, e.g.,
0

0

One particular built-in constant is a de facto variable that is constantly being overwritten:

ans for the evaluation of the most recent input expression with no explicit assignment

Care needs to be taken that no variable is intentionally assigned the name ans by
overwriting because that variable name can be reassigned a value without explicit
instruction during the execution of a program. Thus, though years is a commonly used
variable name in computational problems, its French equivalent ans should be avoided.
Similar to this are random number “constants”, also de facto variables because the values
are overwritten every time they are called:

rand for a random number from a uniform distribution in [0,1]
randn for a random number from a normal distribution with zero mean and unit variance

These random number constants are similar to the i and j used with complex numbers in
terms of retaining their meaning, They represent pseudo random numbers which are
revalued sequentially from a starting seed, but once assigned specific values the built-in
definitions are lost. However, the built-in functionality can be restored with the
commands clear rand and clear randn.

There are also some built-in constants that are characteristic of the particular computer on
which calculations are being performed, again susceptible to being overwritten, such as

realmin for the smallest positive real number that can be used
realmax for the largest positive real number that can be used
eps for the smallest real positive number such that (1 + eps) differs from (1)

Some built-in "constants" are matrices constant by structure but variable in dimension:

zeros(n) for an nxn matrix whose elements are all 0
ones(n) for an nxn matrix whose elements are all 1
eye(n) for an nxn matrix whose diagonal elements are 1 with all other elements 0

Special Built-in Functions

Matlab has very many named functions that come with the application. As with variable
names, function names are also case sensitive. The pre-defined built-in functions usually
have names whose alphabetic characters are all lower case. There are too many to

29

enumerate in a tutorial, but some that have substantial utility in computation and
mathematical manipulation and which use standard nomenclature are the usual
trigonometric functions and their inverses (angle values in radians)

sin, cos, tan, csc, sec, cot, asin, acos, atan, acsc, asec, acot

the hyperbolic trigonometric functions and their inverses (angle values in radians)

sinh, cosh, tanh, csch, sech, coth, asinh, acosh, atanh, acsch, asech, acoth

and the exponential and various base logarithms

exp exponential of the argument
log natural logarithm of the argument
log2 base 2 logarithm of the argument
log10 base 10 logarithm of the argument

There are also several less commonly used built-in mathematical functions which can be
very useful in particular circumstances such as various Bessel functions, gamma
functions, beta functions, error functions, elliptic functions, Legendre function, Airy
function, etc. All of these built-in mathematical functions are, of course, algorithms to
compute rational numerical representation within word memory size, and thus do not
produce exact values either for irrational numbers or for numbers whose decimal
expansion does not terminate within machine limits.

In addition to these functions that do a numerical mapping, there are also built-in
functions for characterizing an argument. Functions for characterizing complex numbers,
some of which also are applicable to ordinary real numbers, include

abs for the absolute value
conj for the complex conjugate
real for the real part
imag for the imaginary part

Similarly, there are built-in functions that characterize ordinary real numbers

factor for producing a vector of prime number components
gcd for greatest common divisor
lcm for least common multiple
round for closest integer
ceil for closest integer of greater than or equal value
floor for closest integer of lesser than or equal value

30

Matlab also has built-in functions to characterize vectors of elements

length for the number of elements
min for the minimum value among the elements
max for the maximum value of among elements
mean for the mean value of the elements
median for the median value of the elements
std for the standard deviation from the mean of element values

There are some built-in logical functions as well, valued as 1 when true and 0 when false:

isprime for status of a number as prime
isreal for status of a number as real
isfinite for status of a number being finite
isinf for status of a number being infinite

Matlab also has several built-in functions for vectors and matrices in addition to those
which are extensions of built-in functions for individual numerical matrix elements

size for number of rows and columns
det for determinant
rank for matrix rank
inv for inverse
trace for sum of diagonal elements
transpose for transposing rows and columns
ctranspose for matrix complex conjugate transpose (adjoint)
eig for column vector of eigenvalues
svd for column vector of singular value decomposition
fft for finite Fourier transform
ifft for inverse finite Fourier transform
sqrtm for matrix square root
expm for matrix exponentiation
logm for matrix logarithm

Compound Expressions and Operator Precedence

Users can construct their own functions by defining algorithms or expressions that
combine simpler or built-in functions and constants; by producing composites from
nesting of simpler functions; by scaling or mapping to a different domain, etc.; and by
installing computational code as function m-files in the Matlab search path. Some

31

simple representative examples, presented here by definition with generic arguments x
and y are:

e = x + log(x)
f = cos(sin(tan(x + sqrt(y))))
g = atan(y/x)
h = sqrt(x^2 + y^2)
Similarly, manipulations can be done to create compound expressions involving matrices
and vectors. For simple examples, suppose M and N are generic square matrices of the
same dimension. Some sample user-created composite expressions are:

P = M^2 + 2.*(M*N) + N^2
Q = inv(transpose(sqrtm(M) + logm(N)))
R = fft(N\M)./((length(M))*(rank(N)))

When the construction of composite expressions gets complicated the order and
precedence of operations becomes important. In Matlab, expressions are evaluated first
with grouping of parentheses, innermost first sequentially to outermost whenever there is
nesting. Evaluation then takes place from left to right sequentially at each level of
operator precedence. This is of importance when binary operations are not commutative.
The precedence order is { .^, ^} > {unary +-} > { .*, *, ./, /, \ } > { + , - } but the
sequence of operations can be specified explicitly by parenthesis grouping. As an
example consider the following value assignment with no grouping

>> k = 1-2^3/4+5*6

Matlab would first go from left to right in the right hand side expression looking for a
right (i.e., closing) parenthesis. Finding none, it would then search from left to right
looking for exponentiation operators. There is one present, linking the digit 2 with the
digit 3, so the first step in constructing a value would be to assign the segment 2^3 with
its mathematical value of 8. That exhausts the top level of precedence, so the procedure
is recursively repeated left to right at each level of lower precedence giving a sequence

k = 1-8/4+5*6
k = 1-2+5*6
k = 1-2+30
k = -1+30
k = 29

But what if there were some grouping parameters in the expression? Using the same
sequence of elements in k suppose we have the value assignment

>> m = (1-2)^(3/(4+5)*6)

Now when Matlab initially goes from left to right looking for a right parenthesis it will
find one immediately following the element 2. So it then immediately backtracks to find
the closest left parenthesis and does a sub-evaluation of the elements within that set of

32

grouping parentheses. In this case it finds only one operation, i.e., (1-2), and evaluates it
to (-1). Then the search continues to the right until the next right parenthesis is found.
This continues until all groupings have been collapsed to single elements, after which the
recursive left to right processing based on operator precedence continues. In this
particular example, the result would be

m = (-1)^(3/(4+5)*6)
m = (-1)^(3/9*6)
m = (-1)^(0.33333…*6)
m = (-1)^(2)
m = 1

Logical operators also have a precedence order: { ~ } > { & } > { | }.

Commutivity of Operations and Finite Decimal Expansion Approximations

By definition matrix multiplication is non-commutative, e.g., M*N is different from
N*M, so many expressions involving matrix operations will also be dependent on
positioning relative to operators. Addition and multiplication operations on scalars
should be commutative, but computational procedures involving round off or irrational
number representation by finite decimal expansion can occasionally lead to unexpected
results, for example:

>> t = 0.4 + 0.1 - 0.5 assigns a value 0 to the variable t
>> u = 0.4 - 0.5 + 0.1 assigns a value 2.7756e-017 to the variable u

The same problem can also lead to occasional surprises in the value assignment for
logical variables, for example

>> v = (sin(2*pi) = = sin(4*pi))

assigns a value 0 to the variable v (logical false), giving the impression that the sine
function does not have a period of p2 .

Computing with matrices and vectors

The matrix is the fundamental object in Matlab. Generically a matrix is an n row by m
column array of numbers or objects corresponding to numbers. When n is 1 the matrix is
a row vector, when m is 1 the matrix is a column vector, and when both n and m are 1
the 1x1 matrix corresponds to a scalar. Development of an end user interface for easy
access of subroutines used in numerical computations with matrices, particularly in the
context of linear algebra, was the original concept behind the development of Matlab.
Thus, calculations involving matrices are really well-suited for the Matlab application.
Matrix calculations also can represent an efficiency in doing simultaneous manipulations,
i.e., vectorized calculations. This can eliminate the need to cycle through nested loops of

33

serial commands. As an example, let’s compare a matrix computation with an equivalent
calculation using scalars. Suppose we have a matrix

˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

=

987

654

321

power1

The vectorized matrix procedure

>> power2 = power1.^2

is more efficient than is the scalar procedure:

>> for nrow=1:3
 for mcolumn = 1:3
 power2(nrow, mcolumn) = (power1(nrow, mcolumn)).^2
 end
 end

Simultaneous linear equations

One of the most powerful and commonly used matrix calculation procedure involves the
solution of a system of simultaneous linear equations. As an illustrative example we
will consider a very elementary case: the grocery bill for customers Abe, Ben, and Cal
who purchase various numbers of apples, bananas, and cherries:

Customer Apples Bananas Cherries Cost
Abe 1 3 2 0.41
Ben 3 2 1 0.37
Cal 2 1 3 0.36

From this data we want to know the costs of an individual apple, an individual banana,
and an individual cherry. Using Matlab we can create a count matrix A that has the
quantities purchased arranged with the rows representing the customers and the columns
representing the types of fruit, i.e.,

˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

=

312

123

231

A

34

and a column vector b representing the total cost for each customer, i.e.,

˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

=

0.36

0.37

0.41

b

If we then create a column vector x representing the individual cost of an apple, a banana,
and a cherry in descending order, i.e.,

˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

=

x(3)

x(2)

x(1)

x

then the system can be stated as the matrix equation

A*x = b

Multiplying each side from the left by the inverse of the matrix A will give

((inv(A))*A)*x = (inv(A))*b

But a matrix multiplied by its inverse from the right or left gives an identity matrix I with
ones on the diagonal and zeros elsewhere, so that

((inv(A))*A)*x = I*x = x

Thus, the simple solution using Matlab is the command

>> x = (inv(A))*b

which will produce the vector with the unit costs of each individual fruit:

˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

=

0.0600

0.0800

0.0500

x

Thus the grocer charges 5 cents for an apple, 8 cents for a banana, and 6 cents for a
cherry.

Eigenvectors and Eigenvalues

Because Matlab was originally developed primarily for linear algebra computations, it is
particularly suited for obtaining eigenvectors and eigenvalues of square matrices with

35

non-zero determinants. The determinant of a square n x n matrix A from which a
constant l has been subtracted from the diagonal elements will be a polynomial of
degree n in l and the roots of that polynomial are the eigenvalues of the original square
matrix A. The eigenvectors of such a matrix will consist of n column vectors, with n
elements each, which can form an n by n eigenvector matrix V. If the n eigenvalues are
inserted along the diagonal of an n by n matrix of zeros to form the diagonal eigenvalue
matrix D, then original matrix A corresponds to

>> A = V*D*(inv(V))

After left multiplication by inv(V) and right multiplication by V on each side of the
equation it can be seen that the diagonal matrix D is equivalent to inv(V)*A* V. The
Matlab syntax for obtaining these entities is

>> [V,D] = eig(A)

where eigenvectors are assembled as column vectors in the matrix V and eigenvalues are
placed on a diagonal of matrix D with zeros elsewhere. When there is only a single
variable assignment, the eig function returns a column vector of the eigenvalues. As an
example, let

˜̃
¯

ˆ
ÁÁ
Ë

Ê
=

45

21
A

Then the command line instruction d = eig(A) returns

d =
 -1
 6

whereas the command line instruction [V,D] = eig(A) returns

V =

 -0.7071 -0.3714
 0.7071 -0.9285

D =

 -1 0
 0 6

36

Roots of polynomials and zeros of functions

Another computational procedure that is commonly used in Matlab is that of finding the
roots of polynomials, or in the case of non-polynomial functions, argument values which
produce functional values equal to zero. For example the trivial polynomial x^2 – 4
has zeros at x = – 2 and at x = +2, which are also called roots since the function is a
polynomial. Similarly the function sin(p2 x) has zeroes at x = 0, x = ± 1, x = ± 2, etc.
Although the roots of the trivial polynomial can be evaluated by inspection, it can also be
done using Matlab if we form a row vector p with coefficients of powers of x in
descending order: p = [1 0 – 4]. The command line instruction will produce a
column vector with the roots:

>> proots = roots(p)

proots =

 2.0000
 -2.0000

The polynomials can be much more elaborate and roots are not always real. For example
consider the polynomial 3*x^5 – 10*x^4 + 2*x^3 – 7*x^2 + 4*x – 8 which can be
represented in Matlab as

q = [3 -10 2 -7 4 -8]

The roots are easily found and displayed as a column vector with the command line
instruction

>> qroots = roots(q)

qroots =

 3.3292
 -0.5335 + 0.8285i
 -0.5335 - 0.8285i
 0.5356 + 0.7335i
 0.5356 - 0.7335i

The inverse of the roots function is the poly function, which will produce a row vector of
polynomial coefficients in descending power order that describe a polynomial function
whose roots are given by the input data vector. This is arbitrary up to a multiplicative
factor, so the answer given is with scaling such that the coefficient of the highest power is
set equal to 1. Thus, using the variables defined here,

>> qcoeffs = poly(qroots)

37

will regenerate the values in the vector q, scaled by 3
1 since the lead coefficient was 3.

Argument values that produce functional values equal to zero in non-polynomial
functions, built-in or user-defined, can be obtained in Matlab by using the fzero
command. This is a search procedure however, and a starting point or an interval must be
specified. Whenever a zero functional value is detected the corresponding argument is
returned as the answer with no further searching. Thus, for multiple solutions only the
first found from the search start value is returned, in the form of a scalar. The target
function name is preceded by an @ symbol and a start point or interval has to be
specified. Thus, using the trivial example above of sin(x), where we know the zeros by
inspection, a particular solution nearp can be obtained with Matlab by giving the
command line instruction

>> sinzero = fzero(@sin, [0.9*pi 1.1*pi])

sinzero =

 3.1416

which calculates the closest answer as 3.1416, approximately p , as expected.

Poles, residues, and partial fraction expansion

The residue function in Matlab is a bit unusual in that it is its own inverse, with the
computational direction determined by the number of input and output parameters. Its
utility is to determine the residues, poles, and direct truncated whole polynomial obtained
with the ratio of two standard polynomials when that ratio does not reduce to a third
standard polynomial, or vice versa. When there are three output variables and two
argument vectors, the arguments are taken to be the coefficients of a numerator
polynomial and the coefficients of a denominator polynomial. The output vectors are the
residues coefficients for the poles, the pole locations in the complex plane, and
descending coefficients of the direct whole polynomial part of the expansion. As an
example
>> pn = [1 -8 26 -50 48];
>> pd = [1 -9 26 -24];
>> [r,p,k] = residue(pn,pd)

r =
 4.0000
 3.0000
 2.0000
p =
 4.0000
 3.0000
 2.0000
k =
 1 1
This is equivalent to the expression

38

24269

4850268
23

234

-+-

+-+-

xxx

xxxx =
4

1
4

3

1
3

2

1
211 01

-
+

-
+

-
++

xxx
xx

Using the residue function in reverse, if we know the partial fraction expansion vectors,
we can then reconstruct the polynomials whose ratio generated it. In this case the residue
coefficient vector, the pole location vector, and the direct whole polynomial vector are
given as arguments with the output being the corresponding numerator and denominator
polynomials which form an equivalent ratio:

>> [qn,qd] = residue(r,p,k)

qn =
 1.0000 -8.0000 26.0000 -50.0000 48.0000

qd =
 1.0000 -9.0000 26.0000 -24.0000

The residue function can also be used when the polynomial ratio has poles with
multiplicity or order greater than one. Typing help residue at a command line prompt will
give details concerning those special circumstances.

Convolution and deconvolution

Many engineering applications involving input and output functions to and from a system
use numerical convolution and deconvolution to describe each in terms of a system
transfer function. These numerical processes correspond to a process of polynomial
multiplication and its inverse. If an input function and a transfer function can be
represented as vectors of lengths n and m then the output can be expressed as a
convolution vector whose length is (n + m –1). This is similar to polynomial
multiplication. Consider for example the polynomials y = (ax + b) and z = (cx + d), both
of which have a coefficient vector length of 2, i.e., [a b] and [c d]. The multiplication
of these two polynomials yields (acx^2 + (ad + bc)*x + bd), which has a vector length of
(2+2-1) = 3, i.e., [(ac) (ad+bc) (bd)]. In Matlab, such convolution can be
accomplished by using the conv function on the two vectors. The command line
instruction in Matlab to find the convolution would require numerical values be assigned
to the coefficients a, b, c, and d. Using these input vectors

>> yzconv = conv(y,z)

would generate the convolution vector. The deconv function is merely the inverse.
For example, if the output vector yzconv and the transfer function z were known but the
input y unknown, then the deconvolution

>> ydeconv = deconv(yzconv,z)

39

would reconstruct the values of y as a deconvolution vector having the same sequence of
elements that produced the known output vector.

Finite Fourier and Inverse Fourier Transforms

The process of convolution in one domain corresponds to a process of multiplication in
that domain's Fourier transform space. This can simplify calculations of complicated
convolution problems and is commonly used in engineering and signal processing. Once
the calculations have been performed, the results can be recast in the original domain
using an inverse Fourier transform. Matlab provides functions for doing such transforms.
The function fft, and its 2-D equivalent fft2, transform a vector or the columns of a matrix
to a Fourier transform domain. Similarly, the inverse functions ifft and ifft2, transform a
vector or the columns of a matrix to the inverse Fourier transform domain. As a trivial
example consider the vector f = [1 2 3] and its transformation to a vector g in Fourier
transform space

>> g = fft(f)

g =

 6.0000 -1.5000 + 0.8660i -1.5000 - 0.8660i

then reversion to a vector h in the original space which reconstitutes the original f:

h = ifft(g)

h =

 1 2 3

Numerical Differentiation and Integration

Matlab has a few functions that can be used in obtaining finite approximations for
differentiation and for numerical integration by quadrature. Numerical differentiation
methods are difficult because vector or matrix elements cannot always be expanded in
resolution to approximate limiting ratio values. However, if a function or data vector can
be fit well by an approximating polynomial, then the polyder function can be used to get
a derivative of that approximate function. This function considers an n element argument
vector to represent the n coefficients of a polynomial of order (n-1) in descending order,
i.e., the last element is the zero order coefficient. For example, suppose we have an
independent variable vector x = [1 2 3 4 5] and suppose we have a dependent functional
vector y = [0 –3 –4 –3 0]. We can fit this data exactly to a fourth degree polynomial
with 5 coefficients. The Matlab function polyfit is used and we choose to store the
coefficients in a vector ypoly:

40

>> ypoly = polyfit(x,y,4)

ypoly =

 -0.0000 0.0000 1.0000 -6.0000 5.0000

The coefficients of the derivative of the approximating (and in this case exact)
polynomial representation are then obtained with the polyder function, which we will
store in a vector designated ydercoef. Because the zero order polynomial term is a
constant whose derivative is identically zero, that final element is omitted in the vector of
derivative coefficients generated by polyder. Note that this vector is a vector of
coefficients and can be used to obtain numerical values for the “derivative” dx

dy at any

particular value of the independent variable x.

>> ydercoef = polyder(ypoly)

ydercoef =

 -0.0000 0.0000 2.0000 -6.0000

The diff function in Matlab uses the limiting approximation of the ratio of function
change to argument change to obtain a numerical derivative. This can produce very crude
results, but can be somewhat useful if the independent variable values are regularly
spaced with high resolution and the functional value changes at that resolution are
relatively smooth. The syntax for this procedure, using the same example data as were
used illustrating the polyder method but this time storing in a vector ynumderiv, is:

>> ynumderiv = diff(y)./diff(x)

ynumderiv =

 -3 -1 1 3

With this method, the “derivative” values themselves are the elements of the vector,
rather than coefficients. Note that, because of the difference method used, the vector of
derivative values is one element shorter than the original data vectors.

Numerical integration can be done with analogous methods. As an illustration, let’s
consider the integration of the same dependent function variable vector y from the
numerical differentiation example above over the range of the independent vector x, also
from that prior example. We can construct a formula-based integration vector using the
polyint function on the polynomial approximation vector ypoly, and we shall store it in a
vector yintcoef

>> yintcoef = polyint(ypoly, 0)

41

yintcoef =

 -0.0000 0.0000 0.3333 -3.0000 5.0000
0

The second argument of the polyint function is a constant of integration and will appear
as the final element in the quadrature vector if it is specified. With no second argument
a value of zero is assumed, so it was unnecessary here but was used anyway to illustrate
the two-argument syntax. The elements computed in the vector yintcoef are coefficients
of a polynomial, in descending order, from which numerical values can be computed for
any particular argument value x.

Another method for integration is numerical quadrature with Matlab’s quad function,
which uses an adaptive Simpson’s Rule algorithm. The arguments for this function are a
function name or definition in terms of an independent variable, the lower limit of
integration, and the upper limit of integration. Thus, to use the same example, we would
need to create a function m-file, say yvalues.f, to define the function element by element
from data vectors. Alternatively if an explicit relationship can be given, such as the exact
polynomial found in this case with polyfit, then the functional expression can be given in
single quotes as the argument. This latter method will be shown here since creating
function m-files are not covered until the following section. The range of x in the
example is 1 to 5. The polynomial coefficient vector for the curve fitting had third and
fourth order coefficients of zero so that the function value at each value of x is given by
x.^2 – 6*x + 5. Therefore, if we want to store the value of the numerical integration in
the variable ynumint, we can use the command

>> ynumint = quad('x.^2 - 6*x + 5', 1, 5)

ynumint =

 -10.6667

Compare that result with the result derived from the yintcoeff vector, i.e.,

0.3333*(5^3 – 1^3) -3*(5^2 – 1^2) + 5(5^1 – 1^1) = -10.6708

42

Numerical solution of differential equations

Matlab has several solver functions for handling ordinary differential equations (ODEs),
and with the Matlab 6 generation a few functions for handling initial value problems
(IVPs) and boundary value problems (BVPs) have been included. There is also a
specialized PDE Toolbox with functions for use with partial differential equations, but
this Toolbox is not included in the Matlab licenses issued to ITS. However, there is one
function included in the standard distribution of Matlab 6 for use in cases of PDEs that
are parabolic or elliptic with two dependent variables. In general the syntax for using
solvers is

>> [x,y] = solver(@func,[xinitial xfinal], y0, {options})

This assumes that a differential equation of order n is recast as a system of n first order
differential equations of n variables and that it is described in a function m-file func
where the independent variable vector x spans the range from xinitial to xfinal and where
dependent variable y to be solved has a known initial value vector y0. The independent
variable vector x is uniformly spaced and is generated in response to solution iterations.
Elements of the vector y are the solutions calculated for each value of the independent
variable x. The most commonly used ODE solvers for non-stiff systems are ode45 and
ode23, both of which use a Runge-Kutta type method.. The solvers ode15s and ode23s
are commonly used for stiff equations. For boundary value problems, the general release
of Matlab 6 has a solver bvp4c and for parabolic and elliptic PDEs the solver pdepe.

Section 6: Programming

Matlab has its own programming language, also known by the name Matlab, which is
structured very much like most programming languages. Because its origin involved
interfacing with many of the original linear algebra subroutines written in Fortran, Matlab
has roots there. But there is also much similarity with C due to later development of
graphics functionality and the desktop GUI. The Matlab programming language is thus
not particularly difficult or obscure, and the primary task in becoming adept at using it
involves learning the various notations and syntax rules.

Using the Editor

Matlab has the functionality of incorporating user-created files external to the Command
Window. These files need to be placed in a folder or directory defined in the pathway
and should consist of a series of valid Matlab commands. These are thus equivalent to
macros or subroutines in other programming languages, and are called m-files. They
should have an extension of a period and a lower case m so that they can be recognized
as Matlab text files. The Matlab 6 GUI has a text editor interface that allows users to
create m-files within the Matlab application. It is launched from the navigation toolbar
with File -> New -> M-file which opens up a new floating window ready for code text
input:

43

This editing window has its own toolbar with conventional Windows type pull down
menus and button icons. Lines are numbered outside the text area for convenient
referencing when debugging or inserting break, pause or flagging points. This editor tool
is very convenient, with color coding and indenting features that aid in construction, but
m-files can also be created as plain ascii text in other text editors such as MS Word.

Types and Structures of M-files

There are two main types of m-files which are very similar to each other: script files that
act as command sequence macros with no parameter passing; and function files that also
act as command sequence macros but which accept parameters by value and return a
computed number, vector, or matrix assigned by the calling program. M-file scripts have
no formal structure other than consisting of a sequence of valid Matlab command line
input. A trivial example is the two line m-file shown in the figure illustrating the editor
window, which will echo the text string and display the date on the screen. After saving
this file, which can be done from the File pull down menu, with a name such as today.m,
any subsequent command line reference to it will result in the execution of its contents.
This applies both to input from a Command Window prompt and to any call from within
another m-file.

44

A function m-file is similar except that the first command line should have the form

function [var1 var2 {…}] = functionname(arg1, arg2, {…}
)

and the returned information should assign the computed functional values to var1, var2,
etc., obtained with the function computational algorithm. A trivial example:

function f = doubleval(x)
f = 2*x;

which creates a function that doubles the value of the input as the return value. If you
save this code with a name such as doubleval.m, any subsequent call to doubleval from
the Command Window prompt or from another script will return a value twice as large.

45

Internal Documentation

Matlab m-files can be annotated with internal documentation that is ignored by the
command interpreter. Any part of a command line, at a command window prompt or
within m-file code, following a percent sign, i.e. %, that is not enclosed in quotes is
considered as documentation and does not get processed. The % delimiter can be
anywhere on a line. For example, compare the following command line instructions:

>> u = 5% + 1%

u =

 5

>> v = '5% + 1%'

v =

5% + 1%

For an illustration of internal documentation, here is the display of an annotated function
m-file, tripleval.m, which returns a value three times that of the input:

46

Passing variables by name and value

If a script m-file is called from a Command Window prompt or by another script, then it
is processed as a sequence of commands just as if each line had executed individually or
had been incorporated as individual lines of the calling m-file. Thus, all variables created
and values assigned to them become a part of the workspace and are recognized by any
subsequent reference. On the other hand, function m-files have local variables by default.
Only the values specified as function components are returned. However, a variable
created within a function m-file can be declared global before assigning a value. If this is
done then the next subsequent use of that variable name in another function m-file in
which it has also been declared as global will start with the value already established.
Every function that is invoked will have its own workspace, but global variables can be
shared.

Also, function m-files may themselves contain functions, appended as subfunctions,
which are constructed with the same structure as a regular function but with a return
line indicating the end. Subfunctions within each level can also share global variables
and can include their own subfunctions. As an illustration consider the following
function m-file

47

The function xseven has two subfunctions, xfour and xthree. The subfunctions xfour and
xthree share a global variable xone, the subfunction xfour calls the same level subfunction
xthree, and the subfunction xthree has its own local subfunction xtwo.

Using the function xseven is a very contorted way of multiplying a number by seven, but
it illustrates function and subfunction architecture. In the Workspace Window notice that
a variable generated within a function, e.g., xone, does not get carried over.

Function evaluation and function handles

Once a Matlab function m-file has been constructed, named, and placed in the search
path, it can be used in several ways. Let’s consider the example that we have already
constructed and named xseven.m. The most direct usage is to assign some variable the
value of the function at a given argument, e.g.,

y(1) = xseven(5)

would assign a value of 35 to the variable y, whether interactively from a command line
prompt or as a line of code in a script m-file. Alternatively, there is a command eval in
Matlab which will evaluate a character string as a line of code. Thus, we get the same
result if we use the command

y(2) = eval(‘xseven(5)’)

However, this is not too efficient, as the entire Matlab interpreter is loaded for processing
eval. For function evaluations the command feval, which is able to load only what is
needed, can be used for greater efficiency. This command takes as arguments a function
name, followed by that function’s arguments. The function’s arguments can be by value
or by variable name if a value has already been assigned. As an example, suppose that
we already have a variable z assigned the value 5 in the workspace. Then an equivalent

48

assignment for y can be obtained with

y(3) = feval(‘xseven’, z)

A new feature in version 6 of Matlab is the function handle data type. This provides a
means of speeding up execution by passing essential information about the function
through a function handle, referenced with the syntax @function_name. The handle can
be assigned to a variable name, which in turn can replace the character string in the
arguments of feval. If we assign @xseven to a function handle variable, say

x7handle = @xseven

then yet another, faster method of assigning the variable y above would be

y(4) = feval(x7handle,z)

The results of all these methods, which have been stored in the vector y,are identical and
have the value 35, i.e., the argument 5 operated on by the function xseven which in a
roundabout way calculates a multiplication by seven.

Function recursion

A function value can also be passed back to itself through recursion. A simple example
is a function that computes a triangular number (sum of all integers less than or equal to
the argument). In this function script notice that the function triangular calls itself:

49

function f = triangular(n)

% finds the sum of all integers from 1 through n

t = n;
if n > 1
 t = t + triangular(n-1);
end;
f = t;

Flow control

In Matlab, flow control procedures, as well as syntax, are very similar to procedures in
many other programming environments. The for and while commands are constructs for
executing a block of commands multiple times until a specified incrementing index value
is reached or a logical termination condition is met. The finish of a repeating block of

commands must be specified with an end statement. The general format is thus

for {index} = {firstvalue}:{lastvalue}
{command1; command2; ...}
end

while {logical condition}
{command1; command2; ...}
end

Just as in other programming environments, the for and while loops can have layers of
nesting. As an example let’s look at a script for finding the number of seconds in a week,
with emphasis on illustrating loops and nesting rather than efficiency:

% find the number of seconds in a week
total = 0; % start with none yet counted
for m = 1:7 % consider every day in a week
 for n = 1:24 % consider every hour in a day
 minval = 1; % start minutes counter
 while (minval <= 60)
 secval = 1; % start seconds counter
 while (secval <= 60)
 total = total + 1; % increment total
 secval = secval + 1;% increment secs
 end;
 minval = minval + 1; % increment mins

50

 end;
 end;
 end;

Matlab also has the capability of logical contingency flow control with the if and switch
commands. The general construction of an if command is

if {logical condition}
 {command1; command2; ...}
 elseif {logical condition}
 {command1; command2; ...}
 .
 .
 .
 elseif {logical condition}
 {command1; command2; ...}
 else
 {command1; command2; ...}
end

The blocks of commands are executed if the specified logical condition is true and an
optional block of commands following else is executed if none of the preceding logical
conditions are true. The elseif segment can be expanded to include multiple logical
conditions and command blocks, but only the block following the first logically true
condition will be executed.

The switch command has a similar function but flow is controlled by the current value of
a specified expression . The general structure is

switch {expression}
 case {value1}
 {command1; command2; ...}
 case {value2}
 {command1; command2; ...}
 otherwise
 {command1; command2; ...}
end

The command block executed is that following the case value which corresponds to the
value of the specified expression. An optional otherwise command block can be included
to cover expression values which are not enumerated in the cases.

51

As an example of using if and switch flow control, consider a script that determines the
number of non-primes, primes, and twin primes (incrementing by 2 gives another prime)
in a particular range of integers, for example between 1001 and 2000:

% find prime status of integers in a range
nontwins = 0; % start with none yet counted
twins = 0; % start with none yet counted
nonprimes = 0; % start with none yet counted
for n = 1001:2000 % test all numbers in the range
 if isprime(n)
 switch isprime(n+2)
 case 1
 twins = twins + 1; % increment
 otherwise
 nontwins = nontwins + 1; % increment
 end;
 else
 nonprimes = nonprimes + 1; % increment
 end;
end;
notprime = nonprimes
prime = nontwins + twins
twinprimes = twins

String evaluation and manipulation

Although character strings are stored as vectors of ascii character code integers within
Matlab, they can be evaluated and manipulated in certain circumstances. If a string
contains text that represents a valid Matlab command or expression, then the eval
command can process the string as if it were command line input. Similarly, if a string
consists of the name of a defined or built-in function, then the feval command specifying
the function name and its input arguments can be used to generate a value. As an
illustration consider the following script that computes the integer within a given range
that has the largest positive difference between its sine and cosine:

% maximum difference in sin vs cos in integer range
maxnum = 1; % initialize with first argument
maxdiff(1) = sin(1) - cos(1); % initialize difference
x = 'sin(n) - cos(n)'; % make a string function
for n = 2:1000 % select integer range
 y(n) = eval(x); % evaluate the string
 maxdiff(n) = feval('max',y(1:n)); % update maximum
 if (y(n)>maxdiff(n-1))
 maxnum = n; % update the argument if needed
 end;

52

end;
maxnum % integer maximizing (sin - cos)
maxdiff = feval('max',y) % difference maximum

In this particular example the result will be the integer that most closely approximates a
value of pp k24

3 + , which, for the selected range, turns out to be 882, or

about pp 2804
3 + . There are also special built-in functions for evaluating and

manipulating strings which are the text equivalent of integers, numbers, or even matrices.
All these require that any arguments which are not decimal-based integers or numbers be
in a character string format (enclosed within single quotes). This class of functions
includes

str2int and int2str [converting from strings to integers and vice versa]
str2num and num2str [converting from strings to numbers and vice versa]
int2str [converting integers to character strings]
hex2dec and dec2hex [converting hexadecimal strings to integers and vice versa]
bin2dec and dec2bin [converting binary strings to integers and vice versa]
base2dec and dec2base [converting nondecimal strings to integers and vice versa]

The general syntax used with these functions is

stringvalue = number2string(number)
numbervalue = string2number(string)

As an example of the use of these commands we can construct a function for adding
hexadecimal numbers, a feature which is not a built-in Matlab utility. Here is one way to
do this, where the input is two hexadecimal character strings:

function f = hexadd(hex1,hex2)
% Add 2 hexadecimal numbers represented by text
strings
newhex = dec2hex(hex2dec(hex1) + hex2dec(hex2));
f = newhex;

Note that the output is also a hexadecimal character string:

53

Keyboard input

Matlab allows the programmer to include interactive input from the keyboard with the
input command. The command incorporates a prompt in the Command Window so that
the user knows that an input is waiting. A variable is assigned the value of the user’s
input according to the syntax of the input command’s argument. The syntax for the input
command argument is a character string for prompting the user, enclosed in single
quotes, followed by a lower case s in single quotes if the input is to be considered a string
rather than a number or matrix. This is a common way to allow a user to specify a
starting guess in an optimization script or to specify a cutoff for an infinite series
computation or iterative process. As an example, let’s construct a script to evaluatep
recursively from an iterative algorithm in which the user can set a limit on the number of
iterations:

% script to illustrate user keyboard input
disp('Iterative Approximation to pi');
reply = input('Limit to iterations? [y/n]','s');
if (reply == 'y')
 itmax = input('Maximum iterations?');
else
 itmax = 100;
end;
iter = 0; % initialize iteration number
res = 0.0001; % resolution for detecting change
prevpi = 2; % initialize a previous value
piapprox = 2 + 2/sqrt(2); % initial guess
while ((abs(piapprox - prevpi) >= res)& (iter <
itmax))
 prevpi = piapprox; % reset the previous value

54

 piapprox = 2 + 2/sqrt(piapprox); % new iteration
 iter = iter + 1; %increment iteration number
end;
iterations = iter
pi = pi
picalc = piapprox
difference = pi - piapprox

If you test out this script you will find that a consistent value is reached after six
iterations even if more than that number is specified as the maximum. However you will
also notice that the iterative convergence is to a number very slightly less than the
analytic value ofp at the same resolution. This is probably a consequence of errors

propagating from imprecision in the finite decimal representation of 2 . It should be a
reminder to programmers to be aware of round-off and truncation effects when
constructing evaluation schemes involving a substantial number of sequential operations
involving floating point approximations.

Multidimensional arrays and indexing

The fundamental unit in Matlab is a two dimensional matrix whose elements can be
referenced by row position n and column position m. These element locations are
specified in parentheses following the matrix name, with the row position given first.
Thus, for example A(2,3) refers to the element of matrix A which occupies the second
row and third column. However, the contents of the matrix are stored within Matlab
memory, regardless of how they may be displayed or referenced, as a single column
matrix, i.e., a column vector, with sequential values column by column. Therefore an
element in an NxM matrix A can also be referenced by a single index, A(p) where

p = (m-1)*N + n

so that the last element in the first column has index p = N, the first element in the
second column has index p = N+1, etc..
Matrices can be concatenated by defining a matrix of matrices, or by using the cat
command, but of course the result of every concatenation must be be a rectangular array.
As an example, suppose we have four simple rectangular matrices

˜̃
¯

ˆ
ÁÁ
Ë

Ê
=

456

321
A ˜̃

¯

ˆ
ÁÁ
Ë

Ê
=

123

654
B

˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

=

65

43

21

C
˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

=

12

34

56

D

These can be concatenated as

E = [A B] giving a matrix of 2 rows and 6 columns

55

F = [C; D] giving a matirx of 6 rows and 2 columns

The cat command is equivalent, using a direction argument, 1 or 2, to specify
concatenation in a column or in a row respectively. Thus, we would get the same result
as above by constructing the matrices E and F as

E = cat(2, A, B)
F = cat(1, C, D)

If an element position outside a matrix is referenced, there will be an error message
displayed, for example when trying to display A(3,2) from above. However, if an
element outside the current range is assigned a value, Matlab will accept the assignment
and fill in all other element positions necessary to form an expanded rectangular matrix
with zeros. We cannot directly concatenate all four of the example matrices above as

G = [A B; C D]

because A and C have differing numbers of columns and rows, as do B and D. However,
if we assign a value (0 for example) to A(3,3), B(3,3), C(3,3), and D(3,3), then all four of
the component matrices will be restructured as square matrices of dimension 3, padded
with zeroes where not explicitly defined., and the assignment for G above can be
processed.

Arrays of dimension greater than two can be useful, for specifying three dimensional
coordinates, assembling functional values determined by three or more independent
variables, and so forth. Matlab was developed in the context of matrix algebra where
most functions, matrix multiplication and so forth, are defined on the basis of two
dimensional rectangular arrays, so two dimensional arrays are the primary objects.
Nevertheless, Matlab can accommodate higher dimensional array notation. The
positional index numbers can be expanded to three, four, or more. However, display is
still limited to two dimensional “cross sections” or slices, and the actual storage is again
as a single column vector with an internal index for a multidimensional array element
assigned sequentially by row position, then by column position, then by third index, and
so forth. Higher dimensions are not really amenable to visual conceptualization, but
think of a four dimensional array being like a set of books along a shelf, each having the
same number of pages and with each page having a same size rectangular matrix. If there
are five books each with six pages of matrices with seven columns and eight rows, then a
partiuclar element in the array Z with all the aggregate matrix elements could be
referenced in multidimensional form as Z(row, column, page, book), e.g. Z(1,2,3,4) for
the first row and second column of the matrix on page 3 of book 4. This would
correspond to an alternative single column internal storage reference. Before book 4 there
are three books with six pages with 7x8 matrices, thus containing 3*6*7*8 = 1008 total
elements. Then before page 3 there are two pages with 7x8 matrices, thus containing
2*7*8 = 112 total elements. Finally, there is one column before the second, in the matrix
on page 3 of book 4, thus containing 1*8 = 8 total elements. Hence the internal indexing

56

would assign 1008 + 112 + 8 = 1128 positions before getting to Z(1,2,3,4). Therefore,
the programmer could reference Z(1,2,3,4) alternatively by Z(1129) in this example.

Debugging

Matlab has extensive features to assist in debugging program errors, both compile time
errors that primarily involve user mistakes in syntax and run time errors which either
interrupt execution or produce unexpected or erroneous results. Help for both command
line input and m-file source code debugging is available.

The Matlab interpreter will display error messages in the Command Window when it
encounters some operational instruction that it cannot understand. Typically it will give
some feedback about the problem, including a line number if the error is in an m-file.
For example, suppose at the command line we type

>> x(0) = (1^0)/factorial(0)

The interpreter will respond with

??? Index into matrix is negative or zero
because array indices are restricted to positive integers. This could also happen if the
problem occurred within an m-file script. Let an initial version of a script ebase.m, which
is supposed to find the value of the natural logarithm base be constructed as

%script to find the natural logarithm base e
evalue = 0 % initialize the value
prev = -1; % initialize a previous value
n = 0; % initialize index
while (evalue ~= prev) % iterate if still converging
 nterm(n) = (1^n)/factorial(n); % next term
 prev = evalue; % update previous value
 evalue = prev + nterm(n); % update value
 n = n + 1; % increment
index
end;
evalue % show final value

There will be the same syntax error concerning a non-positive integer index shown, but
this time there will also be an additional diagnostic comment of the form

Error in ==> C:\matlabR12.1\work\ebase.m
On line 6 ==> nterm(n) = (1^n)/factorial(n); % next term

We, as the user, can then edit the script to make an adjustment. If we do not care about
keeping the values of the individual terms in the series we can merely convert nterm to a
transient valued scalar by removing the index , or we could fix the problem by replacing
nterm(n) with nterm(n+1) in the script.

57

Run time errors are usually more difficult to spot and correct, and there are sometimes
several possibilities as to the origin. Operations that would terminate execution in other
programming environments do not always do so in Matlab. For example value
assignment involving division of a non-zero number by zero will give an assignment of
Inf (infinity) without stopping program execution. Likewise, assignment involving
division of zero by zero produces an assignment of NaN (not a number), without halting
execution. Errors in logic from user programming can lead to false calculations without
giving any diagnostic warning. In the ebase.m script for obtaining a value for the natural
logarithm base, suppose the series term had been written as

nterm(n+1) = (1^n)/gamma(n);

where we have made the logic mistake of using gamma(n) rather than factorial(n).
Because the gamma function for a positive integer is actually the factorial function of that
same integer argument less one, i.e.,

gamma(n) = factorial(n-1)

we have a logic error in user supplied instruction. The function gamma(0) will evaluate
to Inf so that the first series term computes to zero with the result that the base value for
natural logarithms remains at the initialization value without any subsequent iteration
being performed. This error in logic can be fixed by the user via changing gamma(n) to
gamma(n+1), or its equivalent, factorial(n).

Other common logic errors that will not cause termination of program execution are
things such as infinite loops, mistakes in operator precedence or grouping,
unintentionally overwriting a variable value from name duplication, and systematic
propagation of round-off or truncation error. There are several methods to use in
tracking down such errors. One straightforward way is to delete the semicolons from the
end of assignment instruction lines so that variable values are displayed in the Command
Window during program execution. Another method is to have some user-specified
diagnostic string displayed at certain designated points in the coding or whenever some
logical condition (such as the value of a variable exceeding a certain number) is satisfied.
This can be done with the disp command, which displays the value of its argument in the
Command Window. The programmer can also insert instances of the keyboard command
in the code, which will cause execution to halt and give a K>> prompt in the Command
Window. At this point instructions such as changing or testing a variable value can be
given from the keyboard. Upon a keyboard command of return, the program execution
continues. An example code to illustrate these techniques is the following for getting the
value of a Riemann zeta function z from its infinite series definition, i.e., the sum of all
reciprocals of positive integers raised to the power given as the argument We assume it
has been saved in a file zeta.m. This script should find an asymptotic value for zeta with
an argument supplied within the code, in this instance 2. The theoretical asymptotic

value for z (2) is
6

2p
, but we don’t know the rate of convergence, or the processor time

58

needed. To periodically check the progress and confirm that the program is not stalled or
executing an infinite loop, a line has been included within the while loop to display the
series term number after every million iterations. This is followed by a keyboard
command to allow us to check the current sum from a command line prompt and
terminate the loop if we think a sufficient value has been reached . The script can be run
in debug mode with Debug -> Save and Run from the Editor toolbar

From the keyboard let’s check the sum a couple of times at millionth term intervals to
confirm that we are really in a long process that indeed is converging to an expected
value rather than being stuck in some unending computational process, then terminate the
iteration when we reach an acceptable level of accuracy.

59

Using Matlab with External Code

When developing programs to be run in Matlab or in another environment in which
Matlab files can be called, there may be times when various interface tools will be
needed. A wide variety of such tools exist, but naturally they will be platform-dependent
or source code language-dependent. Thus, there are not really any generic methods. A
developer will have to customize the tools for the particular circumstances.

Exchanging and viewing text information

Matlab programs can communicate with and use external code in many circumstances.
The simplest examples are transferring data to and from external files in the form of ascii
numerical matrices with the save and load commands. Communication can also be on
the level of examining and transferring ascii text source code. For example, consider a
simple piece of ascii text

function f = conevolume(r,h)
% volume of a cone with base radius r and height h
f = pi*(r^2)*h/3;

60

saved in three formats in the Matlab Work folder: conevolume.doc (MS Word document),
conevolume.txt (plain ascii text document), and conevolumne.m (Matlab m-file).
All can be opened from the Matlab Editor, but the MS Word document will contain
binary code and not be useable. Similarly, all these files can be opened and viewed as
text in MS Word. The MS Word text file can be used by Matlab if it is opened in an
editor and saved as ascii or m-file with a “.m” extension.

Compiling and calling external files from Matlab

Matlab can compile external Fortran and C code into MEX (Matlab EXternal) files using
the mex command. The executable is stored in a file with an extension that depends on
the external platform. Examples are filename.dll for a Windows platform and
filename.mexsol for a Sun Solaris OS platform. When compiled these external code files
can be utilized just as if they were built-in Matlab scripts or functions. As an illustration,
let’s consider some code written in C that accomplishes the same task as the
conevolume.m code above, compiled on a Windows platform. In order to avoid the
confusion of having programs of the same name with various extensions in the same
folder or directory, we will name the source code for this C version cvolume.c to
distinguish it from conevolume.m

/*==
=
 * CVOLUME.C volume of cone from base radius and
height
 * Calling syntax: v = cvolume(r,h)

===/

#include <math.h>
#include <mex.h>

/* Input Arguments */

#define R_IN prhs[0]
#define H_IN prhs[1]

/* Output Arguments */

#define V_OUT plhs[0]

#define PI 3.14159265

static void cvolume(
 double v[],
 double r[],

 double h[]
)

{

61

 v[0] = PI*r[0]*r[0]*h[0]/3;
 return;
}

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])

{
 double *v;
 double *r,*h;

 V_OUT = mxCreateDoubleMatrix(1,1, mxREAL);

 /* Assign pointers to the various parameters */

 v = mxGetPr(V_OUT);
 r = mxGetPr(R_IN);
 h = mxGetPr(H_IN);

 /* Do the actual computation in a subroutine */
 cvolume(v,r,h);
 return;

}

You can see that the C code is quite a bit longer and more complex, so normally you
would just use the Matlab programming language to do such a simple calculation.
However, there may be occasions when execution time can be improved by using
compiled code of another language. This situation can occur, for example, when the
Matlab code involves extensive looping or iterating. Also, some other languages may
have libraries available for specialized purposes or functions.

To compile this code, you will need to setup for MEX files if you have not done so
already. At the Command Window Matlab prompt, type

>> mex -setup

and you will subsequently be prompted for information about your computer’s operating
system and the compiler that you want to use. Unix systems usually have Fortran and C
compilers such as f77 or gcc installed, but Windows platforms may not come configured
with any. Thus, Matlab has a bundled compiler, Lcc, that is used as the default C
complier if no other is specified. Unfortunately the current release of Matlab does not
have a bundled Fortran compiler. After finishing the setup, you should be ready to
compile programs, at least ones written in C. The sytax for compiling is to give the file
name and extension as the target for the mex command, e.g.

62

>> mex cvolume.c

to compile the C code given in the illustrative example. If you do this on a Windows
platform, you will generate an executable cvolume.dll. If you compile it on a Solaris
platform, you will generate an executable cvolume.mexsol, etc.

Once you have done the compilation, you can use the command cvolume at a Matlab
prompt and get the same answer as you get using the command conevolume whose
source is a Matlab language m-file. The volume of a cone which has a base radius 1 and
a perpendicular height 1 is computed by these two codes as

>> volume_Matlab = conevolume(1,1)

volume_Matlab =

1.0472

>> volume_C = cvolume(1,1)

volume_C =

1.0472

The current distribution of Matlab has a more elaborate example based on a three body
orbital dynamics problem, which consists of an m-file yprime.m and an equivalent C code
version yprime.c that can be compiled as a MEX-file. Those example files are located in
the directory or folder Matlab_root -> extern -> examples -> mex

Calling Matlab objects from external progams

Matlab has an engine with functions that allow it to act as a callable external function or
subroutine library in Fortran and C programs. The functions open the Matlab engine,
close the engine, get and send matrix arrays, and evaluate Matlab strings. There is
extensive information about these in the built-in Matlab help utility, with examples of
Fortran and C programs that call the Matlab engine. External Fortran and C programs
can also call binary Matlab files such as those created by default with the save command.
The save command with no format flag will save the current workspace information in a
binary file format (MAT) with a default name filename.mat, or the default matlab.mat if
no file name is supplied. MAT file information can be accessed by external programs
with commands similar to those for the Matlab engine. There is extensive information
about the commands for exchanging data with external programs using MAT files in the
built-in Matlab help utility.

Using Java Classes in Matlab

63

The desktop interface that is used for Matlab starting with kernel version 6 was
developed and written in Java. As a result, Matlab now has an integrated Java Virtual
Machine (JVM) and Java classes can be used directly in Matlab at the command line or
within function m-files. Before usage, there must be a file with the name classpath.txt in
the Matlab search path. Matlab has a default file located in the folder or directory
Matlab_root -> toolbox -> local. This can be copied to a directory in the Matlab path
and edited if the programmer has created classes other than those in the default list.
A class or a package of classes can be imported into the workspace with the import
command. If this has not been done for a particular class, that class has to be referenced
by its complete name. As an illustration, consider a simple example where the default
classpath.txt file has already been copied to the current working directory and the Java
awt class package has been imported but the Java lang class package has not. In this case
we can use a class name from the imported package directly on the command line but
must give the complete full name for a class in the package which has not been imported

The Dimension class is recognized because its package has been imported, but the String
class is not recognized as a Java class because its package has not been imported.
However, if the complete name of the String class, i.e., java.lang.String, is used then the
Matlab interpreter recognizes it as a Java class.

Part III: Graphics and Data Analysis

64

Section 7: Graphics and Data Visualization

Matlab has a high level graphics capability that allows users to display data in various
forms without having to incorporate extensive information into a command or into
scripts. This easy procedure uses default values for graphical objects in Matlab’s object
oriented graphics system, Handle Graphics. For more customized and advanced use, the
values can be specified or changed on the command line or in the text of m-file scripts;
and with the release of the Matlab 6 kernel there is also a point and click GUI for users to
change object values in order to alter display characteristics. Display possibilities include
2-D plots, 3-D plots, visual aids such as pie charts and histograms, contours, and
animation. In addition there are many attributes of objects that can be customized,
including scaling, colors, fonts, perspective angles, lighting and shading, and so forth.

Two dimensional plotting

The high level graphics for two dimensional plotting accommodate displays of pairs of
data sets in rectangular linear Cartesian coordiates, on a semilog axis system, on a log-log
axis system, and in polar coordinates. The elementary syntax is

>> plot(x,y) % linear abscissa and ordinate
>> semilogx(x,y) % logarithmic abscissa
>> semilogy(x,y) % logarithmic ordinate
>> loglog(x,y) % logarithmic abscissa and
ordinate
>> polar(theta,rho) % polar graphing

If only one vector argument is supplied, it is considered to be the second (dependent)
variable, i.e., the ordinate or radial distance, and the sequence position in the vector is
used for the corresponding independent variable, i.e., abscissa or counterclockwise angle.
When a vector containing complex valued quantities is plotted, Matlab ignores the
imaginary part and the display represents only the real part. Trailing character string
options in the argument list can specify a line color or type. For example:

>> t = (1:0.1:10);
>> u = (1:0.1:10);
>> x = sin(t)./t;
>> y = cos(u)./u;
>> plot(t,x,’r*’)

would give a 2-D plot of a damped sine wave with points displayed as red asterisks. We
could obtain a 2-D plot of a damped cosine wave in a similar manner. There is a toggle
for getting a new plot (hold off) and for superimposing on an existing plot (hold on).
Assume that we want a second plot superimposed on the first with the same scaling but
with the points displayed in blue circles. Then we would use the additional commands

65

>> hold on;
>> plot(u,y,’bo’)

There are also several display options for discrete data that are commonly used in
presentations for general or business audiences

bar for a vertical bar graph
barh for a horizontal bar graph
stem for a stem plot
area for display of vectors as stacked plots
pie for a pie chart
hist for a histogram in cartesian coordinates
rose for a histogram in polar coordinates

As a simple illustration, load the file planets3.txt from section 3 and label its first column
as radii, then plot a pie chart:

>> load planets3.txt;
>> radii = planets3(:,1);
>> pie(radii)

Three dimensional plotting

66

Matlab has several commands used in displaying data in three dimensions. Among these
are routines for displaying lines with a 3-D perspective, making surface plots of a
function of two independent variables, and making contour plots.

>> plot3(x,y,z) % line through three dimensional
space
>> mesh(q) % wire frame surface for q(x,y)
>> surf(q) % quadrilateral surface rendering

The plot3 command requires 3 vector arguments, the first two forming a grid of
independent variable values and the third being the functional values obtained from the
independent variable values. Thus, all three vectors must be the same length. In contrast,
the argument for the surface plots require that the argument be a matrix whose values
correspond to pairs of independent variable values in a grid. Using the same functions
that we created to illustrate 2-D plotting, we can now plot a line in 3-D:

>> hold off;
>> plot3(t,x,y)

The screen display will use default values for observation angle

More perspective of the 3-D nature of the curve been be obtained by rotating it in 3-D by
selecting the Rotate3D item on the Figure Window's Tool menu bar or by clicking the
rotation button at the end of the Figure Window's icon tool bar, then moving the cursor to
the figure area and moving the mouse around while depressing its left key.

67

To illustrate surface plotting, let us form an underlying grid with the vectors t and u and
then create a function z using both x and y:

>> for i=1:length(t)
 for j=1:length(u)
 z(i,j) = x(i).*y(j);
 end;
 end;

Then let us create a surface plot of the new function z:

>> surf(z)

The 3-D surface will subsequently appear in the Figure Window.

Just as with the line example, the surface can be rotated in 3-D using the same
procedures. If a contour projection onto the grid plane is desired, then the function surfc
can be used. Likewise, the commands

68

>> mesh(z)
>> meshc(z)

would create similar 3-D plots, but with the surface represented in a wire frame display.

Animation

Data animation in Matlab is accomplished by a sequential display of graphic frames. At
an elementary level the frames can be simple plots of points within a Figure Window. If
the hold value is set to off, then each point will appear by itself, creating a display similar
to a moving cursor on the screen.. If the hold value is set to on, then then each frame
will incorporate the data from previous frames and the display will show a tracking type
of pattern. In some cases this method may seem a bit crude because of blinking as each
frame replaces the previous one, and delays in generating frames if needed computations
are extensive or complex. An alternative procedure is the use of the movie feature. For
this, a set of frames is assembled ahead of time into a movie type variable using the
getframe function. Subsequently, the sequence of frames can be played in the Figure
Window using the movie command. As an illustration, let’s use the x and y vectors that
we have created above and create an animation of x versus y with the simple overlay
method but assembling a movie file simultaneously:

hold on;
for k = 1:length(x)
 axis([-1.5 1.5 -1.5 1.5]);
 plot(x(k),y(k),'b*');
 M(k) = getframe;
end;
pause;
clf;
movie(M)

In this example the previously plotted points are retained, and as each point is plotted the
current figure is saved as a frame for a movie with the getframe value. The pause
command will hold the final picture until the next keyboard activity and the clf command
will clear the Figure Window so that the movie will start with a blank screen.

The Handle Graphics system

Handle graphics is Matlab’s object oriented system for handling components used in
constructing graphical displays. The objects are the basic drawing elements. Each object
is identified with a handle and the handle contains information about the object's
characteristics and properties. Specific values of object properties can be edited using the
handles. There are two specific built-in graphics handles that are used for default
plotting. The handle gcf refers to the current figure and its information is used for
generating a Figure Window when none exists at the time a command producing
graphical output is issued. The handle gca refers to the current axes and likewise its
information is used for constructing axes when none exist at a time a plotting command is

69

issued. The handle gco is refers to a graphical object that has been selected in the Figure
Window. It will be empty if there is no Figure Window present or if an object has not
been selected. If a figure object has been selected then information about that object's
properties will be present in gco.

The current values within these handles can be obtained with the commands

>> get(gcf)
>> get(gca)
>> get(gco)

Current values may be edited using the syntax set(handle,'Property',value). For
example, the property specifying the color background within the axes has the name
'Color' and its default value is white ('w' or [1 1 1]). If we want to change this color to
yellow we could do so by selecting the graph axes box within the Figure Window and
then giving the command

>> set(gca,'Color','y')

Similarly, the character of other graphics properties can be edited within the appropriate
handle.

Customizing displays

When first generating a plot, the default values in the gcf and gca, or whatever editing to
them has been done, are used in constructing the display in the Figure Window. As an
alternative to editing the handles, Matlab has a point and click interface for editing some
of the more standard attributes. As an illustration of the GUI method and the handle
editing method, let's start out with a simple figure plot with default values to display the
vector x that was created in the 2-D plotting example. We first need to clear the display
and then give the simple plot command

>> clf
>> plot(t,x)

In this case the default values in the handles will produce a plot figure where there is no
title, the axes scaled to the data range, inward tick marks with values on the left and
bottom, and the data represented by a solid blue line.

70

For point and click editing, click on the backward arrow in the icon bar underneath the
toolbar, then make a selection from the Edit menu. In this example, let's choose Axes
Properties. Selecting this will bring up a Property Editor Window. The Scale tab should
be viewable at first and on this tab, let's check the boxes to show the Grid on the X axis
and on the Y axis and then click on the Apply button. Then click on the Style tab and in
the Axis line width menu, select 2.0 to replace the default 0.5 to give thicker axis lines
and select Cyan from the Color background menu to change from the default white. After
clicking the Apply button, the changes should be apparent in the Figure Window: Now
click on the Labels tab and type in some text for a Figure title, for example "Sinc
function", since this equation being plotted is that of the so-called sinc function , i.e., the
function sinc(t) = sin(t)/t. Again click on the Apply button to make the change appear.
Now go back to the Figure Window and click on the plotted line to select it, then choose
Current Object Properties from the Edit menu. Now a Property Editor window for the
selected line will appear. The style tab should appear on top. Change the Line width
selection menu from the default 0.5 to 2.0 again. Then let's change the Color menu from
the default "Blue" to "Red". These changes also take effect by clicking on the Apply
button. At this point the figure should look like the following:

71

Next, let’s make a couple of changes by direct handle editing:

>> set(gca,'XScale','Log');
>> set(gca,'YDir','Reverse');
>> set(gcf,'Color','w');

This will change the abscissa to a log scale and will reverse the direction of the ordinate
and change the figure background from gray to white. Finally, let’s make a couple of
changes with the graphic commands xlabel and ylabel at the command prompt

>> xlabel(‘Argument value’);
>> ylabel(‘Function value’);

to add labels to the axes. We now have a final customized display

72

Section 8: Data Analysis

Data analysis functions

Matlab was not developed as a statistical package, yet there are some elementary
statistical functions built into the kernel and there is a specialized Statistics Toolbox
available for purchase from Mathworks but which is not currently included in the license
for Matlab on the ITS servers. Among the functions distributed with Matlab itself are

mean for mean or average value of elements
median for median value of elements
min for smallest component
max for largest component
std for standard deviation from the mean of elements
sum for sum of elements
prod for product of elements
sort for sorting elements in ascending order
sortrows for sorting rows in ascending order of first column value

73

cov for variance of a vector or covariance of a matrix
corrcoef for correlation coefficient
The sorting functions are by absolute value when complex numbers are involved and
alphabetically or by ascii character code value when character strings are involved. To
illustrate some of these we will use the simple matrix file with planet radius and mass
data described in Section 3. First let's load the data and sort it

>> load planets1.txt
>> radiussort = sort(planets1)

Then let's find the mean and the standard deviation of the densities of earth, mars, and
venus in kg^10-24/km^3 even though the small sample size of 3 planets will lead to
quite a substantial variance.

 >> density =
3*planets1(:,2)./(4*pi*(planets1(:,1)).^3);
 >> meandensity = mean(density)

meandensity =

 4.8928e-012

>> densitystd = std(density)

densitystd =

 8.5130e-013

Regression and curve fitting

Matlab has a function polyfit for fitting curves with polynomial regression and the
function polyval for evaluating the polynomial fit. The polyfit function has syntax

>> polyfit(var1, var2, order)

where var1 and var2 are equal length vectors and order is the order of the polynomial to
be used in the fitting. For illustration, let's create a noisy quadratic function and see how
the polyfit function works.

>> t = [0:1:10];
>> for i=1:11
 y(i) = (1 + 0.1*rand(1) - 0.05).*((t(i)).^2);
 end;

Then we try fitting this function y with a linear and with a quadratic regression on t.

74

>> ylintest = polyfit(t,y,1);
>> yquadtest = polyfit(t,y,2);

These new variables are vectors containing coefficients for a power series in t which give
the best fit to the actual y data, in descending order such that the coefficient of the highest
power comes first and the constant term, i.e., the y intercept, comes last. The theoretical
values for y based on the best fit polynomial can be obtained with polyval:

>> ylinfit = polyval(ylintest,t);
>> yquadfit = polyval(yquadtest,t);

A plot of the actual data and the regression fittings will show that the quadratic fit is the
most accurate, as expected.

>> plot(t,y,'k*'); %black asterisks for data
>> hold on;
>> plot(t,ylinfit,'r-.');%red dash-dot line for linear
>> plot(t,yquadfit,'b'); %blue solid line for

quadratic

75

This can also be seen by looking at the sum of the squares of the residuals:

>> res2lin = sum((ylinfit - y).^2)
>> res2quad = sum((yquadfit - y).^2)

The exact values will depend on the seed used for generating random numbers in the
original construction of the data, but the sum for the quadratic fit should be around 2% of
that for the linear fit.

Signal and image processing

Matlab has a Signal Processing Toolbox that contains function M-files that are algorithms
for implementing several signal processing tasks. In addition a few of the most
elementary functions, for example the finite fourier transform fft, are included in the basic
Matlab distribution.. The Toolbox has specialized functions related to filtering,
waveform generation and spectral analysis, along with a special GUI called SPTool.
The most elementary filtering function, filter, is included in Matlab and has the syntax

>> output = filter(numcoeff, denomcoeff, input)

where an output vector is formed from filtering an input vector with a transfer function
whose numerator coefficients are contained in the vector numcoeff and whose
denominator coefficients are contained in the vector denomcoeff. As an example,
consider a simple input vector x(n) = [1 3 5 7] for n = [1 2 3 4] and a filter with transfer
function

21

1

21

1
)(

--

-

++

+
=

nn

n
nh

We could obtain the filtered function y(n) = h(n)x(n) with the commands

>> x = [1 3 5 7];
>> num = [1 1];
>> denom = [1 2 1];
>> y = filter(x,num,denom)

y =

 1 4 8

Matlab has several wave generation functions. Some of the most commonly used are

sawtooth for a triangle wave generator
pulstran for a pulse train generator
square for a square wave generator

76

As an illustration, let's generate a triangular, sawtooth shaped wave:

>> t = [0:0.1:20];
>> x = sawtooth(t);
>> plot(t,x)

The sawtooth function is defined as -1 at multiples of 2! and linear with a slope of 1/! at
all other points.

The Signal Processing GUI is launched with the command

>> SPTool

which creates a window with selections of signals, filters, and spectra

77

The view buttons on this window can be used to launch a Signal Browser, a Filter
Viewer, or a Spectrum Viewer.

There is another Toolbox with M-file functions for manipulating arrays containing image
information, the Image Processing Toolbox. Also, many of the Signal Processing
Toolbox functions can be used in conjunction with image processing. Within the Image
Processing Toolbox are routines for geometric operations, image analysis and
enhancement, and region of interest operations. But before working on an image, it has
to be imported into the workspace. This can be done with the load command if the image
data has already been stored in a MAT file. Images with supported formats (e.g., jpg, gif,
tiff, png) can be imported with the imread command and displayed in the Figure Window
with the imshow command. Once an image has been processed as desired, it can then be
exported in a supported format using the imwrite command. As an example, let's import
a low contrast image. tower.jpg, enhance its contrast, and export a comparison image.
For this exercise, you will need to put the image file in your Matlab path. The process
can be done with any image with a supported format, but in this case we choose a low
contrast nighttime picture of the University tower, available for download at

http://www.utexas.edu/cc/math/tutorials/matlab6/tower.jpg

>> I = imread('tower.jpg'); % create image data matrix
>> imshow(I) % display in Figure Window

Now let's add contrast with the histeq command. This spreads out intensities over the
entire possible range, and is particularly useful if actual intensities of all the pixels are
clustered over a narrow range.

78

>> J = histeq(I); % create new image with contrast
>> K = [I J]; % place old and new side by side
>> imshow(K) % display the contrast
>> imwrite(K,'towercontrast.jpg') % write new file

Now there should be a new display in the Figure Window showing both the original and
contrast enhanced picture side by side

and there should also be a new image file, towercontrast.jpg, in the current directory. In
this exercise the data matrix is 3-dimensional, as can be seen in the Size column of the
Workspace Window. This is an RGB (red, blue, green) format, in which the primary
color component is the third index. The first two indices specify the vertical and
horizontal position of the pixel, top to bottom, left to right. Element values represent
intensities. Thus, for example, displaying an element in the original image data matrix

>> disp(I(50,50,2))
 13
tells us that the green intensity of the pixel in the 50th row and 50th column has an
intensity value of 13.

79

This is not the only format for storing image data information. Image objects in Matlab
can also be two dimensional data arrays. The indices correspond to pixels in a
rectangular image and the elements can be either magnitudes of intensity or pointers to
color or intensity information in a separate color map matrix. Color map matrices are
three columns representing components of the primary colors red, blue, and green. Each
row is a particular weighting of each of these in a range from 0 to 1. Indexed matrices,
whose elements point to the color map, will have entries corresponding to particular lines
in the map. The image whose pointers are in matrix X will have its pixel content
determined by the RGB values in the associated color map matrix Y using the command

>> image(X), colormap(Y)

As a small example, let’s create a game board for chess or checkers. First we will create
the 8x8 layout of the board. Pixels whose row and column sum is odd need a different
color from those whose row and column sum is even. But the color within each set needs
to be uniform, so only two lines are needed in the color map. First create the matrix with
pointers to alternating colors

>> Z = [eye(2) eye(2) eye(2) eye(2)];
>> C = 2*ones(8) - [Z;Z;Z;Z]

Now C is the matrix of color map pointers for a checkerboard image. Next we create a
color map with three columns for RGB values with two rows, one for each of the two
colors whose pointer values are 1 or 2. Let’s define the color map as the variable colors.

>> colors(1,:) = [1 1 1]; % pointer value 1 white
>> colors(2,:) = [0 0 0], % pointer value 2 black

The image command will create a color pixel image, with the color map specified with
the colormap command.

>> image(C)
>> colormap(colors)

80

For a more intricate image with a more extensive color map, you can look at one of the
example files distributed with Matlab. One such binary file is mandrill.mat, a facial
image of a gorilla, whose data includes the matrix X with pointer data and the color map
matrix map. Thus, the commands needed for viewing are

>> load mandrill
>> image(X)
>> colormap(map)

Another type of image format is one in which the elements of the image matrix are
intensities rather than pointers to a mapping. The command to generate an image from
this format is imagesc. We can see our previous checkerboard image from matrix C
again with the command

>> imagesc(C)

Images can be manipulated by changing their data matrices or color maps. For example
we can change the black and white checkerboard to a red and cyan one with the
command

>> colors(:,1) = sort(colors(:,1))

or we can remove the blue component of the color map used for the gorilla image with

>> map(:,3) = 0;

81

Demonstrations of many other ways for manipulating and analyzing images are available
in the documentation that comes with Matlab. Expand the Image Processing Toolbox
line in the Launch Pad Window and double click on Demos to see these.

Part IV: Modeling and Simulation

Section 9: Modeling and Simulation

Matlab has several auxiliary Toolboxes distributed by Mathworks, Inc., that are useful in
constructing models and simulating dynamical systems. These include the System
Identification Toolbox, the Optimization Toolbox, and the Control System Toolbox.
These toolboxes are collections of m-files that have been developed for specialized
applications. There is also a specialized application, Simulink, which is useful in
modular construction and real time simulation of dynamical systems.

System Identification

The System Identification Toolbox contains many features for processing experimental
data and is used for testing the appropriateness of various models by optimizing values of
model parameters. It is particularly useful in working with dynamical systems data and
time series analyses. This toolbox is included in the Matlab installations on all the ITS
servers. The identification process is a bit complex, but a guided tour through a simple
example can be accessed with the iddemo command at a Command Window prompt.

Using the Control System Toolbox

The Control System Toolbox contains routines for the design, manipulation and
optimization of LTI (linear time invariant) systems of the form

DuCxy

BuAxx

+=

+=&

where matrices A, B ,C ,D are constant. It can be used individually or as a post-
processing tool for a system created with Simulink. The Control System Toolbox also
supports two auxiliary applications, the LTI Viewer and the SISO Design Tool. The LTI
Viewer is basically used to plot graphs of the system response due to various inputs and
the SISO Design Tool is used to design single input-single output systems, that is systems
for which the input and output vectors have dimensions 1 by 1. These applications can be
launched by double-clicking on the Control System Toolbox icon in the Launch Pad
window of the default Matlab desktop. We don’t comment on the SISO design tool since
that would require knowledge of control theory, but we give an example of the use of LTI
Viewer. Consider the system

82

˙
˚

˘
Í
Î

È

--
=

11

10
A , ˙

˚

˘
Í
Î

È
=

1

0
B , []10=C ,]0[=D .

To import the system to the LTI Viewer, we create a system object using the ss
command.

>> A=[0 1;-1 -1];
>> B=[0 1]';
>> C=[1 0];
>> D=0;
>> s1=ss(A,B,C,D)

a =
 x1 x2
 x1 0 1
 x2 -1 -1

b =
 u1
 x1 0
 x2 1

c =
 x1 x2
 y1 1 0

d =
 u1
 y1 0

Continuous-time model.

Here s1 is the object corresponding to our system. Next, select the options New Viewer
and Import from the File menu, and then choose the object s1. The following figure will
appear which shows the response of the system to a unit step input. By default the initial
condition here is zero.

83

Next, right click on that figure, select the Plot type option and then the Impulse option,
to get the following figure which is a plot of the response of the system to a unit impulse
at time zero.

84

Optimization Toolbox

The Optimization Toolbox offers a rich variety of routines used for the minimization and
maximization of functions under constraints. We will describe only two simple and
commonly used examples. The first one is fminbnd which calculates the location in a
given interval at which a function attains its minimum. Note that the maximum of a
function)(xf is equal to minus the minimum of)(xf- , hence we can use fminbnd to
compute locations of maxima of functions too. Suppose now that we want to compute the

minimum and maximum values of
2

)(xexxf -⋅= in the interval]1,1[- .

85

Then we type in the command line:

>> x=fminbnd('x*exp(-x^2)',-1,1)

x =

 -0.7071

>> x*exp(-x^2)

ans =

 -0.4289

>> x=fminbnd('-x*exp(-x^2)',-1,1)

x =

 0.7071

>> -(-x*exp(-x^2))

ans =

 0.4289

86

The minimum and maximum values of
2

)(xexxf -⋅= are -0.4289 and 0.4289
and are attained at -0.7071 and 0.7071 respectively.

Next, consider the problem of linear optimization, which is frequently encountered in
Operations Research and Mathematical Economy. The objective is to find n real numbers
that minimize the linear expression

nn xcxcxc +++ ...2211

subject to the constraints:

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

£+++

⋅⋅⋅

£+++

£+++

...

...

...

2211

22222121

11212111

or in matrix form,

minimize xcT such that bAx £ .

The problem can be solved via the function lp . As an example consider the following
2-D linear optimization problem:

Minimize 21 32 xx + , so that the constraints

043 21 £+- xx , 153 21 £+ xx , 52 21 £- xx , 02 21 £-- xx hold.

To solve it we type:

>> c=[2 3];
>> A=[-3 4; 3 1; 1 -2; -2 -1];
>> b=[0 15 5 0]';
>> lp(c,A,b)
>>ans =

 1.0000
 -2.0000

Next we give a geometrical interpretation of this solution. It can be shown that the pair
(x1,x2) that solves the problem, is one of the vertices of the quadrilateral in the following
figure:

87

The edges of the trapezoid correspond to the optimization constraints and the points in its
interior satisfy all of them, hence the solution must be attained in the trapezoid or on its
boundary. Due to a theorem in Linear Optimization, the solution is attained at one of the
trapezoids’ vertices, in this case at the point (1,-2).

Using Simulink

Simulink is a simulation tools library for dynamical systems. Any system in nature can
roughly be thought of as a “black box” receiving an input vector u and eliciting a unique
output vector y. In the case that both u and y vary with time we are talking about
dynamic systems.

88

Associated with a system is the so-called state vector which loosely speaking contains the
required information at time 0t that together with knowledge of the input for time greater

than 0t , uniquely determines the output for 0tt ≥ . A general continuous dynamical

system can be modeled by using the following set of ordinary differential and algebraic
equations:

),,(

),,(

uxtgy

uxtfx

=

=&

for 0tt ≥ and 00)(xtx = , where gf , are general (possibly non-linear functions). In the

following we will consider only linear systems of the form:

DuCxy

BuAxx

+=

+=&
 (1)

where DCBA ,,, are matrices and yux ,, the state, input and output vectors respectively.
Of course the dimensions of DCBA ,,, are such that the matrix manipulations on the
right hand side of (1) are well defined.

Simulink Library Browser

Simulink can be launched by double-clicking on the Simulink icon in the Launch pad
window of the default Matlab desktop.

89

The library’s functionalities are divided into eight groups (click on any of the category
icons for both the Unix or Windows versions). For example the categories Sources and
Sinks contain various kinds of inputs and ways to handle or display the output
respectively. Also, the group Continuous that will be used later deals with dynamical
systems.

90

91

92

Construction/ Simulation of Dynamical Systems

In the following, we consider a simple physical example to illustrate the usage of
Simulink. One of the simplest systems introduced in mechanics classes is the vibrating
spring,

which can be modeled by the ordinary differential equation

uykykym =+¢+¢¢ 21 (2)

Here m is the mass of the body supported by the spring; 1k and 2k are the viscous and
spring friction coefficients respectively, and u is the force applied to the body. The
unknown function y is the distance of the body from the equilibrium position. Our first
observation is that the differential equation describing the motion of the body is of second
order (in other words the highest differentiation order of the equation is 2). To reduce it
to a system of differential equations of first order (so that we can use Simulink) we make
the following substitution:

yx

yx

¢=

=

2

1

Then (1) becomes:

u
m

x
m

k
x

m

k
x

xx

1
2

1
1

2
2

21

+--=

=

&

&

or in matrix form:

u
mx

x

m

k

m

k
x

x
⋅

˙
˙
˚

˘

Í
Í
Î

È
+˙

˚

˘
Í
Î

È
⋅

˙
˙
˚

˘

Í
Í
Î

È

--=˙
˚

˘
Í
Î

È 1
010

2

1
12

2

1

&

&
 (3)

93

Here 1x and 2x are the state variables and u the input to the system. The output can be
selected in various ways depending on what characteristics of the system are desired to be
measured; it could be 1x (that is displacement), 2x (velocity) or a linear combination of

1x , 2x and u . For our purposes we simply define the output to be 1x . That is,

[] [] u
x

x
y ⋅+˙

˚

˘
Í
Î

È
⋅= 001

2

1 (4)

in matrix form.

Equations (3) and (4) constitute the representation of the system in the form (1), with

˙
˙
˚

˘

Í
Í
Î

È

--=
m

k

m

kA 12

10
,

˙
˙
˚

˘

Í
Í
Î

È
=

m
B 1

0
, []01=C , []0=D .

 Furthermore, we take 121 === kkm , that is ˙
˚

˘
Í
Î

È

--
=

11

10
A , ˙

˚

˘
Í
Î

È
=

1

0
B . Our initial

conditions are 2)0(1 =x , 0)0(2 =x , that is at time 0=t the body is located at a distance
of 2 units from the equilibrium position and its velocity is 0. The next step is to build the
system using Simulink. Clicking on the New model button on the upper left corner of the
Simulink library browser a window pops out. Next double click on the Continuous
button, select the State-Space icon and drag it into the new model window.

Double clicking on the dragged State-Space icon the block parameters window appears
in which we specify the matrices CBA ,, and D as well as the initial condition vector.
Note that the matrices are entered in the one row format described in section 4, but for

94

large matrices it is more convenient to define CBA ,, , D in the command line (possibly
with other names) and simply enter their names in the block parameters window.

In the following we double click the Sources icon to select an input for the system. Lets
choose the input Constant and drag it into the new model window. Again, by double
clicking on the dragged Constant icon we specify the value of the constant input. For our
example we take 1=u .

95

The output is selected by clicking on the Sinks button. Choose for example the Scope
icon and drag it into the model window (Scope provides a graph of the system’s output).

Next, connect the system blocks with arrows. For example, to connect the constant and
state-space blocks, click on the right arrow of the constant block and move the cursor to
the left arrow of the state-space block while holding the left mouse key down. We can
also add text on the model window by double clicking at any point of it and inserting the
desired information.

96

Finally click on the Simulation pull down menu on the toolbar and select the Simulation
Parameters option to specify the simulation parameters (the simulation initial and final
time and the ODE solver to be used for example). In this example we choose 10=finalt .

97

Now that the system has been built up, we are ready to run the simulation, in other words
numerically solve the system of ODEs to obtain the output y . Simply, press Start on the
Simulation toolbar menu end then double click on the Scope icon to obtain a plot of the
output.

98

We observe that after time t approximately equal to 9, the displacement remains constant.
Next we change the system’s input to a ramp by following the previous procedure. We
specify the ramp input parameters by double-clicking on the Ramp icon and choosing
slope=1, start time=0 and initial output=0. In the following figures we present the
modified system and its response.

As expected, since the force acting on the body is increasing in magnitude and doesn’t
change direction, the distance from the rest point increases. Also, we consider the case of
a step input, that is a force spontaneously changing its magnitude at some time 0t . Again

the step function parameters, are specified by double-clicking on the Step icon and
choosing step time=1, initial value=0 and final value=1

99

In the sequel, lets consider the case of zero force acting on the body, that is we have a
constant input equal to zero. We expect that the body will eventually return to the rest
position 01 =x and indeed this is what our model predicts.

100

In all previous cases except the ramp input’s case, the system’s output eventually
approaches a constant value. Let’s examine the case where viscous friction is negligible,
that is 01 =k and again the input force is the constant 0 (double click on State-Space
icon and adjust A to [0 1; -1 0]). We expect that the body will be moving internally, since
no force exists to counterbalance the spring’s force acting on it. Indeed, the prediction of
our model is consistent with the physical intuition. As we can see in the latter of next two
figures the output of the system (displacement of the body) oscillates between the
extreme values –2 and 2.

101

In our last example we try to correct this behavior and actually make the system’s output
approach the value 0 (that is to make the body return to the equilibrium position) by
introducing a so-called feedback control law. More precisely we define a new input to the
system which is not user supported as in the previous examples, but depends on the
system’s output. In other words, the system’s output simultaneously defines its input.
Indeed, we define:

˙
˚

˘
Í
Î

È
⋅=

2

1

x

x
Ku , where]10[-=K . The selection of the feedback gain matrix K is of

course not arbitrary but we will not comment on its derivation. In fact K can be selected

102

in many different ways and it is the task of the control engineer to determine the best one,
depending on design requirements and limitations.

Then our system becomes:

[] [] uxy

xKBAx

⋅+⋅=

⋅⋅+=

001

)(&

but using Simulink we actually develop the equivalent formulation

[] 1

1

01

)(

yy

xy

xKBAx

⋅=

=

⋅⋅+=&

In the next two figures the feedback controlled system is presented along with its output.
To construct this model drag the Gain blocks from the Math library (and again double
click on them to specify the gain matrices). Also, in order to rotate a Gain block simply
right-click on it, choose the Format option from the pull-down menu that appears and
then select the options Rotate block or Flip block. Finally, note that the body returns to
its equilibrium position as it was desired.

103

